Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Jul;69(1):20–29. doi: 10.1016/S0006-3495(95)79891-5

Environments of the four tryptophans in the extracellular domain of human tissue factor: comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein.

C A Hasselbacher 1, E Rusinova 1, E Waxman 1, R Rusinova 1, R A Kohanski 1, W Lam 1, A Guha 1, J Du 1, T C Lin 1, I Polikarpov 1, et al.
PMCID: PMC1236221  PMID: 7669897

Abstract

The local environments of the four tryptophan residues of the extracellular domain of human tissue factor (sTF) were assessed from difference absorption and fluorescence spectra. The difference spectra were derived by subtracting spectra from single Trp-to-Phe or Trp-to-Tyr replacement mutants from the corresponding spectrum of the wild-type protein. Each of the mutants was capable of enhancing the proteolytic activity of factor VIIa showing that the mutations did not introduce major structural changes, although the mutants were more susceptible to denaturation by guanidinium chloride. The difference spectra indicate that the Trp residues are buried to different extents within the protein matrix. This evaluation was compared with the x-ray crystal structure of sTF. There is excellent agreement between predictions from the difference spectra and the environments of the Trp residues observed in the x-ray crystal structure, demonstrating that difference absorption and particularly fluorescence spectra derived from functional single-Trp replacement mutants can be used to obtain information about the local environments of individual Trp residues in multi-tryptophan proteins.

Full text

PDF
20

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach R. R. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 1988;23(4):339–368. doi: 10.3109/10409238809082548. [DOI] [PubMed] [Google Scholar]
  2. Badea M. G., Brand L. Time-resolved fluorescence measurements. Methods Enzymol. 1979;61:378–425. doi: 10.1016/0076-6879(79)61019-4. [DOI] [PubMed] [Google Scholar]
  3. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broze G. J., Jr, Majerus P. W. Purification and properties of human coagulation factor VII. J Biol Chem. 1980 Feb 25;255(4):1242–1247. [PubMed] [Google Scholar]
  5. Di Scipio R. G., Hermodson M. A., Yates S. G., Davie E. W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry. 1977 Feb 22;16(4):698–706. doi: 10.1021/bi00623a022. [DOI] [PubMed] [Google Scholar]
  6. Edgington T. S., Mackman N., Brand K., Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost. 1991 Jul 12;66(1):67–79. [PubMed] [Google Scholar]
  7. Eftink M. R. Fluorescence techniques for studying protein structure. Methods Biochem Anal. 1991;35:127–205. doi: 10.1002/9780470110560.ch3. [DOI] [PubMed] [Google Scholar]
  8. Eftink M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994 Feb;66(2 Pt 1):482–501. doi: 10.1016/s0006-3495(94)80799-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fiore M. M., Neuenschwander P. F., Morrissey J. H. The biochemical basis for the apparent defect of soluble mutant tissue factor in enhancing the proteolytic activities of factor VIIa. J Biol Chem. 1994 Jan 7;269(1):143–149. [PubMed] [Google Scholar]
  10. Harlos K., Martin D. M., O'Brien D. P., Jones E. Y., Stuart D. I., Polikarpov I., Miller A., Tuddenham E. G., Boys C. W. Crystal structure of the extracellular region of human tissue factor. Nature. 1994 Aug 25;370(6491):662–666. doi: 10.1038/370662a0. [DOI] [PubMed] [Google Scholar]
  11. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  12. Laws W. R., Contino P. B. Fluorescence quenching studies: analysis of nonlinear Stern-Volmer data. Methods Enzymol. 1992;210:448–463. doi: 10.1016/0076-6879(92)10023-7. [DOI] [PubMed] [Google Scholar]
  13. Muller Y. A., Ultsch M. H., Kelley R. F., de Vos A. M. Structure of the extracellular domain of human tissue factor: location of the factor VIIa binding site. Biochemistry. 1994 Sep 13;33(36):10864–10870. doi: 10.1021/bi00202a003. [DOI] [PubMed] [Google Scholar]
  14. Nemerson Y. Tissue factor and hemostasis. Blood. 1988 Jan;71(1):1–8. [PubMed] [Google Scholar]
  15. Neuenschwander P. F., Morrissey J. H. Deletion of the membrane anchoring region of tissue factor abolishes autoactivation of factor VII but not cofactor function. Analysis of a mutant with a selective deficiency in activity. J Biol Chem. 1992 Jul 15;267(20):14477–14482. [PubMed] [Google Scholar]
  16. Rehemtulla A., Ruf W., Miles D. J., Edgington T. S. The third Trp-Lys-Ser (WKS) tripeptide motif in tissue factor is associated with a function site. Biochem J. 1992 Mar 15;282(Pt 3):737–740. doi: 10.1042/bj2820737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ross J. B., Rousslang K. W., Kwiram A. L. Optically detected magnetic resonance of tryptophan triplet states in native and urea-denatured proteins and polypeptides. Biochemistry. 1980 Mar 4;19(5):876–883. doi: 10.1021/bi00546a008. [DOI] [PubMed] [Google Scholar]
  18. Ross J. B., Wyssbrod H. R., Porter R. A., Schwartz G. P., Michaels C. A., Laws W. R. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin. Biochemistry. 1992 Feb 18;31(6):1585–1594. doi: 10.1021/bi00121a002. [DOI] [PubMed] [Google Scholar]
  19. Roy S., Hass P. E., Bourell J. H., Henzel W. J., Vehar G. A. Lysine residues 165 and 166 are essential for the cofactor function of tissue factor. J Biol Chem. 1991 Nov 15;266(32):22063–22066. [PubMed] [Google Scholar]
  20. Ruf W., Edgington T. S. Two sites in the tissue factor extracellular domain mediate the recognition of the ligand factor VIIa. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8430–8434. doi: 10.1073/pnas.88.19.8430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Cofactor residues lysine 165 and 166 are critical for protein substrate recognition by the tissue factor-factor VIIa protease complex. J Biol Chem. 1992 Mar 25;267(9):6375–6381. [PubMed] [Google Scholar]
  22. Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Tissue factor residues 157-167 are required for efficient proteolytic activation of factor X and factor VII. J Biol Chem. 1992 Nov 5;267(31):22206–22210. [PubMed] [Google Scholar]
  23. Ruf W., Schullek J. R., Stone M. J., Edgington T. S. Mutational mapping of functional residues in tissue factor: identification of factor VII recognition determinants in both structural modules of the predicted cytokine receptor homology domain. Biochemistry. 1994 Feb 15;33(6):1565–1572. doi: 10.1021/bi00172a037. [DOI] [PubMed] [Google Scholar]
  24. Spicer E. K., Horton R., Bloem L., Bach R., Williams K. R., Guha A., Kraus J., Lin T. C., Nemerson Y., Konigsberg W. H. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5148–5152. doi: 10.1073/pnas.84.15.5148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strickland E. H., Horwitz J., Kay E., Shannon L. M., Wilchek M., Billups C. Near-ultraviolet absorption bands of tryptophan. Studies using horseradish peroxidase isoenzymes, bovine and horse heart cytochrome c, and N-stearyl-L-tryptophan n-hexyl ester. Biochemistry. 1971 Jun 22;10(13):2631–2638. doi: 10.1021/bi00789a033. [DOI] [PubMed] [Google Scholar]
  26. Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
  27. Waxman E., Laws W. R., Laue T. M., Nemerson Y., Ross J. B. Human factor VIIa and its complex with soluble tissue factor: evaluation of asymmetry and conformational dynamics by ultracentrifugation and fluorescence anisotropy decay methods. Biochemistry. 1993 Mar 30;32(12):3005–3012. doi: 10.1021/bi00063a011. [DOI] [PubMed] [Google Scholar]
  28. Waxman E., Ross J. B., Laue T. M., Guha A., Thiruvikraman S. V., Lin T. C., Konigsberg W. H., Nemerson Y. Tissue factor and its extracellular soluble domain: the relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry. 1992 Apr 28;31(16):3998–4003. doi: 10.1021/bi00131a015. [DOI] [PubMed] [Google Scholar]
  29. Waxman E., Rusinova E., Hasselbacher C. A., Schwartz G. P., Laws W. R., Ross J. B. Determination of the tryptophan:tyrosine ratio in proteins. Anal Biochem. 1993 May 1;210(2):425–428. doi: 10.1006/abio.1993.1220. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES