Abstract
The high sensitivity and sharp frequency selectivity of acoustical signal transduction in the cochlea suggest that an active process pumps energy into the basilar membrane's oscillations. This function is generally attributed to outer hair cells, but its exact mechanism remains uncertain. Several classical models of amplification represent the load upon the basilar membrane as a single mass. Such models encounter a fundamental difficulty, however: the phase difference between basilar-membrane movement and the force generated by outer hair cells inhibits, rather than amplifies, the modeled basilar-membrane oscillations. For this reason, modelers must introduce artificially either negative impedance or an appropriate phase shift, neither of which is justified by physical analysis of the system. We consider here a physical model based upon the recent demonstration that the basilar membrane and reticular lamina can move independently, albeit with elastic coupling through outer hair cells. The mechanical model comprises two resonant masses, representing the basilar membrane and the reticular lamina, coupled through an intermediate spring, the outer hair cells. The spring's set point changes in response to displacement of the reticular lamina, which causes deflection of the hair bundles, variation of outer hair cell length and, hence, force production. Depending upon the frequency of the acoustical input, the basilar membrane and reticular lamina can oscillate either in phase or in counterphase. In the latter instance, the force produced by hair cells leads basilar-membrane oscillation, energy is pumped into basilar-membrane movement, and an external input can be strongly amplified. The model is also capable of producing spontaneous oscillation. In agreement with experimental observations, the model describes mechanical relaxation of the basilar membrane after electrical stimulation causes outer hair cells to change their length.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. B. Cochlear micromechanics--a physical model of transduction. J Acoust Soc Am. 1980 Dec;68(6):1660–1670. doi: 10.1121/1.385198. [DOI] [PubMed] [Google Scholar]
- Ashmore J. F. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987 Jul;388:323–347. doi: 10.1113/jphysiol.1987.sp016617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
- Cooper N. P., Rhode W. S. Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res. 1992 Nov;63(1-2):163–190. doi: 10.1016/0378-5955(92)90083-y. [DOI] [PubMed] [Google Scholar]
- Dallos P., Evans B. N., Hallworth R. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature. 1991 Mar 14;350(6314):155–157. doi: 10.1038/350155a0. [DOI] [PubMed] [Google Scholar]
- Evans B. N., Hallworth R., Dallos P. Outer hair cell electromotility: the sensitivity and vulnerability of the DC component. Hear Res. 1991 Apr;52(2):288–304. doi: 10.1016/0378-5955(91)90019-6. [DOI] [PubMed] [Google Scholar]
- Fukazawa T. Evoked otoacoustic emissions in a nonlinear model of the cochlea. Hear Res. 1992 Apr;59(1):17–24. doi: 10.1016/0378-5955(92)90097-7. [DOI] [PubMed] [Google Scholar]
- Geisler C. D. A cochlear model using feedback from motile outer hair cells. Hear Res. 1991 Jul;54(1):105–117. doi: 10.1016/0378-5955(91)90140-5. [DOI] [PubMed] [Google Scholar]
- Geisler C. D. A realizable cochlear model using feedback from motile outer hair cells. Hear Res. 1993 Aug;68(2):253–262. doi: 10.1016/0378-5955(93)90129-o. [DOI] [PubMed] [Google Scholar]
- Housley G. D., Ashmore J. F. Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol. 1992 Mar;448:73–98. doi: 10.1113/jphysiol.1992.sp019030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwasa K. H., Chadwick R. S. Elasticity and active force generation of cochlear outer hair cells. J Acoust Soc Am. 1992 Dec;92(6):3169–3173. doi: 10.1121/1.404194. [DOI] [PubMed] [Google Scholar]
- Kemp D. T. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am. 1978 Nov;64(5):1386–1391. doi: 10.1121/1.382104. [DOI] [PubMed] [Google Scholar]
- Khanna S. M., Flock A., Ulfendahl M. Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Otolaryngol Suppl. 1989;467:151–156. doi: 10.3109/00016488909138332. [DOI] [PubMed] [Google Scholar]
- Kolston P. J. Sharp mechanical tuning in a cochlear model without negative damping. J Acoust Soc Am. 1988 Apr;83(4):1481–1487. doi: 10.1121/1.395903. [DOI] [PubMed] [Google Scholar]
- Kolston P. J., Viergever M. A., de Boer E., Diependaal R. J. Realistic mechanical tuning in a micromechanical cochlear model. J Acoust Soc Am. 1989 Jul;86(1):133–140. doi: 10.1121/1.398332. [DOI] [PubMed] [Google Scholar]
- Mammano F., Ashmore J. F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature. 1993 Oct 28;365(6449):838–841. doi: 10.1038/365838a0. [DOI] [PubMed] [Google Scholar]
- Neely S. T., Kim D. O. A model for active elements in cochlear biomechanics. J Acoust Soc Am. 1986 May;79(5):1472–1480. doi: 10.1121/1.393674. [DOI] [PubMed] [Google Scholar]
- Neely S. T., Kim D. O. An active cochlear model showing sharp tuning and high sensitivity. Hear Res. 1983 Feb;9(2):123–130. doi: 10.1016/0378-5955(83)90022-9. [DOI] [PubMed] [Google Scholar]
- Patuzzi R., Robertson D. Tuning in the mammalian cochlea. Physiol Rev. 1988 Oct;68(4):1009–1082. doi: 10.1152/physrev.1988.68.4.1009. [DOI] [PubMed] [Google Scholar]
- Ruggero M. A., Robles L., Rich N. C., Recio A. Basilar membrane responses to two-tone and broadband stimuli. Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):307–315. doi: 10.1098/rstb.1992.0063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos-Sacchi J. On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci. 1992 May;12(5):1906–1916. doi: 10.1523/JNEUROSCI.12-05-01906.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sellick P. M., Patuzzi R., Johnstone B. M. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am. 1982 Jul;72(1):131–141. doi: 10.1121/1.387996. [DOI] [PubMed] [Google Scholar]
- Shera C. A., Zweig G. Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am. 1993 Jun;93(6):3333–3352. doi: 10.1121/1.405717. [DOI] [PubMed] [Google Scholar]
- Zurek P. M. Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am. 1981 Feb;69(2):514–523. doi: 10.1121/1.385481. [DOI] [PubMed] [Google Scholar]
- Zweig G. Finding the impedance of the organ of Corti. J Acoust Soc Am. 1991 Mar;89(3):1229–1254. doi: 10.1121/1.400653. [DOI] [PubMed] [Google Scholar]
- Zweig G., Lipes R., Pierce J. R. The cochlear compromise. J Acoust Soc Am. 1976 Apr;59(4):975–982. doi: 10.1121/1.380956. [DOI] [PubMed] [Google Scholar]
- Zwislocki J. J., Kletsky E. J. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science. 1979 May 11;204(4393):639–641. doi: 10.1126/science.432671. [DOI] [PubMed] [Google Scholar]
- de Boer E. Can shape deformations of the organ of Corti influence the travelling wave in the cochlea? Hear Res. 1990 Feb;44(1):83–92. doi: 10.1016/0378-5955(90)90024-j. [DOI] [PubMed] [Google Scholar]
