Abstract
We have investigated the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers containing a series of cholesterol analogues varying in the length and structure of their alkyl side chains. We find that upon the incorporation of up to approximately 25 mol % of any of the side chain analogues, the DPPC main transition endotherm consists of superimposed sharp and broad components representing the hydrocarbon chain melting of sterol-poor and sterol-rich phospholipid domains, respectively. Moreover, the behavior of these components is dependent on sterol side chain length. Specifically, for all sterol/DPPC mixtures, the sharp component enthalpy decreases linearly to zero by 25 mol % sterol while the cooperativity is only moderately reduced from that observed in the pure phospholipid. In addition, the sharp component transition temperature decreases for all sterol/DPPC mixtures; however, the magnitude of the decrease is dependent on the sterol side chain length. With respect to the broad component, the enthalpy initially increases to a maximum around 25 mol % sterol, thereafter decreasing toward zero by 50 mol % sterol with the exception of the sterols with very short alkyl side chains. Both the transition temperature and cooperativity of the broad component clearly exhibit alkyl chain length-dependent effects, with both the transition temperature and cooperativity decreasing more dramatically for sterols with progressively shorter side chains. We ascribe the chain length-dependent effects on transition temperature and cooperativity to the hydrophobic mismatch between the sterol and the host DPPC bilayer (see McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. (1993) Biochemistry 32:516-522). Moreover, the effective stoichiometry of sterol/DPPC interactions is altered by a significantly large degree of hydrophobic mismatch between the sterol and the DPPC bilayer. Thus the short chain sterols appear to exhibit considerable immiscibility in gel state DPPC bilayers, effectively limiting their interaction with adjacent phospholipid molecules.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bittman R., Clejan S., Jain M. K., Deroo P. W., Rosenthal A. F. Effects of sterols on permeability and phase transitions of bilayers from phosphatidylcholines lacking acyl groups. Biochemistry. 1981 May 12;20(10):2790–2795. doi: 10.1021/bi00513a013. [DOI] [PubMed] [Google Scholar]
- Bruckdorfer K. R., Demel R. A., De Gier J., van Deenen L. L. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes. Biochim Biophys Acta. 1969 Jul 15;183(2):334–345. doi: 10.1016/0005-2736(69)90089-3. [DOI] [PubMed] [Google Scholar]
- Butler K. W., Smith I. C., Schneider H. Sterol structure and ordering effects in spin-labelled phospholipid multibilayer structures. Biochim Biophys Acta. 1970 Dec 1;219(2):514–517. doi: 10.1016/0005-2736(70)90236-1. [DOI] [PubMed] [Google Scholar]
- Clejan S., Bittman R. Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells. J Biol Chem. 1984 Jan 10;259(1):449–455. [PubMed] [Google Scholar]
- Craig I. F., Boyd G. S., Suckling K. E. Optimum interaction of sterol side chains with phosphatidylcholine. Biochim Biophys Acta. 1978 Apr 4;508(2):418–421. doi: 10.1016/0005-2736(78)90344-9. [DOI] [PubMed] [Google Scholar]
- Demel R. A., Bruckdorfer K. R., van Deenen L. L. Structural requirements of sterols for the interaction with lecithin at the air water interface. Biochim Biophys Acta. 1972 Jan 17;255(1):311–320. doi: 10.1016/0005-2736(72)90030-2. [DOI] [PubMed] [Google Scholar]
- Demel R. A., Bruckdorfer K. R., van Deenen L. L. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb + . Biochim Biophys Acta. 1972 Jan 17;255(1):321–330. doi: 10.1016/0005-2736(72)90031-4. [DOI] [PubMed] [Google Scholar]
- Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
- Estep T. N., Mountcastle D. B., Biltonen R. L., Thompson T. E. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978 May 16;17(10):1984–1989. doi: 10.1021/bi00603a029. [DOI] [PubMed] [Google Scholar]
- Frendewey D., Dingermann T., Cooley L., Söll D. Processing of precursor tRNAs in Drosophila. Processing of the 3' end involves an endonucleolytic cleavage and occurs after 5' end maturation. J Biol Chem. 1985 Jan 10;260(1):449–454. [PubMed] [Google Scholar]
- Hsia J. C., Long R. A., Hruska F. E., Gesser H. D. Steroid-phosphatidylcholine interactions in oriented multibilayers--a spin label study. Biochim Biophys Acta. 1972 Dec 1;290(1):22–31. doi: 10.1016/0005-2736(72)90048-x. [DOI] [PubMed] [Google Scholar]
- Huang T. H., Lee C. W., Das Gupta S. K., Blume A., Griffin R. G. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Biochemistry. 1993 Dec 7;32(48):13277–13287. doi: 10.1021/bi00211a041. [DOI] [PubMed] [Google Scholar]
- Kan C. C., Yan J., Bittman R. Rates of spontaneous exchange of synthetic radiolabeled sterols between lipid vesicles. Biochemistry. 1992 Feb 18;31(6):1866–1874. doi: 10.1021/bi00121a040. [DOI] [PubMed] [Google Scholar]
- Kariel N., Davidson E., Keough K. M. Cholesterol does not remove the gel-liquid crystalline phase transition of phosphatidylcholines containing two polyenoic acyl chains. Biochim Biophys Acta. 1991 Feb 11;1062(1):70–76. doi: 10.1016/0005-2736(91)90336-7. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 1. Differential scanning calorimetric studies. Biochemistry. 1985 May 7;24(10):2431–2439. doi: 10.1021/bi00331a007. [DOI] [PubMed] [Google Scholar]
- Mabrey S., Mateo P. L., Sturtevant J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1978 Jun 13;17(12):2464–2468. doi: 10.1021/bi00605a034. [DOI] [PubMed] [Google Scholar]
- McMullen T. P., Lewis R. N., McElhaney R. N. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. Biophys J. 1994 Mar;66(3 Pt 1):741–752. doi: 10.1016/s0006-3495(94)80850-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMullen T. P., Lewis R. N., McElhaney R. N. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993 Jan 19;32(2):516–522. doi: 10.1021/bi00053a016. [DOI] [PubMed] [Google Scholar]
- McMullen T. P., McElhaney R. N. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995 Mar 8;1234(1):90–98. doi: 10.1016/0005-2736(94)00266-r. [DOI] [PubMed] [Google Scholar]
- Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura T., Nishikawa M., Inoue K., Nojima S., Akiyama T., Sankawa U. Phosphatidylcholine liposomes containing cholesterol analogues with side chains of various lengths. Chem Phys Lipids. 1980 Jan;26(1):101–110. doi: 10.1016/0009-3084(80)90014-6. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Jungner M., Vilchèze C., Bittman R. Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles. Biochim Biophys Acta. 1994 Mar 23;1190(2):435–443. doi: 10.1016/0005-2736(94)90105-8. [DOI] [PubMed] [Google Scholar]
- Suckling K. E., Blair H. A., Boyd G. S., Craig I. F., Malcolm B. R. The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure. Biochim Biophys Acta. 1979 Feb 20;551(1):10–21. doi: 10.1016/0005-2736(79)90349-3. [DOI] [PubMed] [Google Scholar]
- Suckling K. E., Boyd G. S. Interactions of the cholesterol side-chain with egg lecithin. A spin label study. Biochim Biophys Acta. 1976 Jun 17;436(2):295–300. doi: 10.1016/0005-2736(76)90194-2. [DOI] [PubMed] [Google Scholar]
- Vincent M., Gallay J. Steroid-lipid interactions in sonicated dipalmitoyl phosphatidyl choline vesicles: a steady-state and time-resolved fluorescence anisotropy study with all trans-1,6-diphenyl-1,3,5-hexatriene as probe. Biochem Biophys Res Commun. 1983 Jun 29;113(3):799–810. doi: 10.1016/0006-291x(83)91070-7. [DOI] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
- de Kruyff B., Demel R. A., van Deenen L. L. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes. Biochim Biophys Acta. 1972 Jan 17;255(1):331–347. doi: 10.1016/0005-2736(72)90032-6. [DOI] [PubMed] [Google Scholar]