Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Aug;69(2):399–408. doi: 10.1016/S0006-3495(95)79912-X

35Cl nuclear magnetic resonance line broadening shows that eosin-5-maleimide does not block the external anion access channel of band 3.

D Liu 1, S D Kennedy 1, P A Knauf 1
PMCID: PMC1236264  PMID: 8527653

Abstract

It has been suggested that Lys-430 of band 3, with which eosin-5-maleimide (EM) reacts, is located in the external channel through which anions gain access to the external transport site, and that EM inhibits anion exchange by blocking this channel. To test this, we have used 35Cl nuclear magnetic resonance (NMR) to measure Cl- binding to the external transport site in control and EM-treated human red blood cells. Intact cells were used rather than ghosts, because in this case all line broadening (LB) results from binding to external sites. In an NMR spectrometer with a 9.4-T magnetic field, red blood cells at 50% concentration (v/v) in 150 mM Cl- medium at 3 degrees C caused 19.0 +/- 1.2 Hz LB. Of this, 7.9 +/- 0.7 Hz was due to Cl- binding to the high affinity band 3 transport sites, because it was prevented by an apparently competitive inhibitor of anion exchange, 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS). The LB was not due to hemoglobin released from the cells, as little LB remained in the supernatant after cells were removed by centrifugation. Saturable Cl- binding remained in EM-treated cells, although the binding was no longer DNDS-sensitive, because EM prevents binding of DNDS. The lower limit for the rate at which Cl- goes from the binding site to the external medium is 2.15 x 10(5) s-1 for control cells and 1.10 x 10(5) s-1 for EM-treated cells, far higher than the Cl- translocation rate at 3 degrees C (about 400 s-1). Thus, EM does not inhibit Cl- exchange by blocking the external access channel. EM may therefore be useful for fixing band 3 in one conformation for studies of Cl- binding to the external transport site.

Full text

PDF
399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Noy S., Cabantchik Z. I. Transport domain of the erythrocyte anion exchange protein. J Membr Biol. 1990 May;115(3):217–228. doi: 10.1007/BF01868637. [DOI] [PubMed] [Google Scholar]
  2. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
  4. Cobb C. E., Beth A. H. Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion-exchange protein: overlap with the reaction sites of other chemical probes. Biochemistry. 1990 Sep 11;29(36):8283–8290. doi: 10.1021/bi00488a012. [DOI] [PubMed] [Google Scholar]
  5. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deuticke B., von Bentheim M., Beyer E., Kamp D. Reversible inhibition of anion exchange in human erythrocytes by an inorganic disulfonate, tetrathionate. J Membr Biol. 1978 Dec 15;44(2):135–158. doi: 10.1007/BF01976036. [DOI] [PubMed] [Google Scholar]
  7. Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry. 1986 Dec 2;25(24):7888–7894. doi: 10.1021/bi00372a015. [DOI] [PubMed] [Google Scholar]
  8. Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 2. Channel blockers. Biochemistry. 1986 Dec 2;25(24):7895–7898. doi: 10.1021/bi00372a016. [DOI] [PubMed] [Google Scholar]
  9. Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. Biochemistry. 1986 Dec 2;25(24):7899–7906. doi: 10.1021/bi00372a017. [DOI] [PubMed] [Google Scholar]
  10. Falke J. J., Kanes K. J., Chan S. I. The kinetic equation for the chloride transport cycle of band 3. A 35Cl and 37Cl NMR study. J Biol Chem. 1985 Aug 15;260(17):9545–9551. [PubMed] [Google Scholar]
  11. Falke J. J., Kanes K. J., Chan S. I. The minimal structure containing the band 3 anion transport site. A 35Cl NMR study. J Biol Chem. 1985 Oct 25;260(24):13294–13303. [PubMed] [Google Scholar]
  12. Falke J. J., Pace R. J., Chan S. I. Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study. J Biol Chem. 1984 May 25;259(10):6472–6480. [PubMed] [Google Scholar]
  13. Falke J. J., Pace R. J., Chan S. I. Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A 35Cl NMR study. J Biol Chem. 1984 May 25;259(10):6481–6491. [PubMed] [Google Scholar]
  14. Forsén S., Lindman B. Ion binding in biological systems as studied by NMR spectroscopy. Methods Biochem Anal. 1981;27:289–486. doi: 10.1002/9780470110478.ch5. [DOI] [PubMed] [Google Scholar]
  15. Fröhlich O., Gunn R. B. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim Biophys Acta. 1986 Sep 22;864(2):169–194. doi: 10.1016/0304-4157(86)90010-9. [DOI] [PubMed] [Google Scholar]
  16. Fröhlich O. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J Membr Biol. 1982;65(1-2):111–123. doi: 10.1007/BF01870474. [DOI] [PubMed] [Google Scholar]
  17. Gunn R. B., Fröhlich O. Methods and analysis of erythrocyte anion fluxes. Methods Enzymol. 1989;173:54–80. doi: 10.1016/s0076-6879(89)73005-6. [DOI] [PubMed] [Google Scholar]
  18. Jennings M. L., Schulz R. K., Allen M. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. J Gen Physiol. 1990 Nov;96(5):991–1012. doi: 10.1085/jgp.96.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knauf P. A., Brahm J. Functional asymmetry of the anion-exchange protein, capnophorin: effects on substrate and inhibitor binding. Methods Enzymol. 1989;173:432–453. doi: 10.1016/s0076-6879(89)73031-7. [DOI] [PubMed] [Google Scholar]
  20. Knauf P. A., Spinelli L. J., Mann N. A. Flufenamic acid senses conformation and asymmetry of human erythrocyte band 3 anion transport protein. Am J Physiol. 1989 Aug;257(2 Pt 1):C277–C289. doi: 10.1152/ajpcell.1989.257.2.C277. [DOI] [PubMed] [Google Scholar]
  21. Knauf P. A., Strong N. M., Penikas J., Wheeler R. B., Jr, Liu S. Q. Eosin-5-maleimide inhibits red cell Cl- exchange at a noncompetitive site that senses band 3 conformation. Am J Physiol. 1993 May;264(5 Pt 1):C1144–C1154. doi: 10.1152/ajpcell.1993.264.5.C1144. [DOI] [PubMed] [Google Scholar]
  22. Liu S. Q., Knauf P. A. Lys-430, site of irreversible inhibition of band 3 Cl- flux by eosin-5-maleimide, is not at the transport site. Am J Physiol. 1993 May;264(5 Pt 1):C1155–C1164. doi: 10.1152/ajpcell.1993.264.5.C1155. [DOI] [PubMed] [Google Scholar]
  23. Nigg E., Kessler M., Cherry R. J. Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements: inhibition of anion transport and photo-oxidative inactivation of acetylcholinesterase. Biochim Biophys Acta. 1979 Jan 19;550(2):328–340. doi: 10.1016/0005-2736(79)90219-0. [DOI] [PubMed] [Google Scholar]
  24. Price W. S., Kuchel P. W., Cornell B. A. A 35Cl and 37Cl NMR study of chloride binding to the erythrocyte anion transport protein. Biophys Chem. 1991 Jul;40(3):329–337. doi: 10.1016/0301-4622(91)80030-u. [DOI] [PubMed] [Google Scholar]
  25. Rao A., Martin P., Reithmeier R. A., Cantley L. C. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry. 1979 Oct 16;18(21):4505–4516. doi: 10.1021/bi00588a008. [DOI] [PubMed] [Google Scholar]
  26. Salhany J. M., Rauenbuehler P. B., Sloan R. L. Characterization of pyridoxal 5'-phosphate affinity labeling of band 3 protein. Evidence for allosterically interacting transport inhibitory subdomains. J Biol Chem. 1987 Nov 25;262(33):15965–15973. [PubMed] [Google Scholar]
  27. Wyatt K., Cherry R. J. Effect of membrane potential on band 3 conformation in the human erythrocyte membrane detected by triplet state quenching experiments. Biochemistry. 1992 May 19;31(19):4650–4656. doi: 10.1021/bi00134a016. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES