Abstract
Evidence is presented for species heterogeneity of the gly-11 analog of gramicidin A incorporated into sodium dodecyl sulfate (SDS) micelles. The evidence for species heterogeneity has been obtained using one-dimensional (1D) 1H NMR spectroscopy. The 1D spectra of the indole NH moiety of tryptophans 9, 13, and 15 show the presence of more than one species. It has been found that the heterogeneity is dependent upon the gly-11/SDS molar ratio. At high SDS concentration (i.e., gly-11/SDS of 3 mM/700 mM) the heterogeneity almost completely disappears. The temperature dependence of these 1H NMR signals suggests that the two species do not interconvert. The results of nuclear Overhauser effect spectroscopy NMR experiments indicate that one species is embedded within the micelle, while the other is nearer the aqueous interface. The importance of side chain interactions with the membrane environment in producing stable, solubilized species of small peptides in SDS micelles is illustrated.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S., Koeppe R. E., 2nd Molecular determinants of channel function. Physiol Rev. 1992 Oct;72(4 Suppl):S89–158. doi: 10.1152/physrev.1992.72.suppl_4.S89. [DOI] [PubMed] [Google Scholar]
- Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
- Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
- Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
- Becker M. D., Koeppe R. E., 2nd, Andersen O. S. Amino acid substitutions and ion channel function. Model-dependent conclusions. Biophys J. 1992 Apr;62(1):25–27. doi: 10.1016/S0006-3495(92)81767-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boni L. T., Connolly A. J., Kleinfeld A. M. Transmembrane distribution of gramicidin by tryptophan energy transfer. Biophys J. 1986 Jan;49(1):122–123. doi: 10.1016/S0006-3495(86)83619-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay A., McNamee M. G. Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method. Biochemistry. 1991 Jul 23;30(29):7159–7164. doi: 10.1021/bi00243a017. [DOI] [PubMed] [Google Scholar]
- Cornell B. A., Separovic F., Baldassi A. J., Smith R. Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys J. 1988 Jan;53(1):67–76. doi: 10.1016/S0006-3495(88)83066-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. H. 2H nuclear magnetic resonance of exchange-labeled gramicidin in an oriented lyotropic nematic phase. Biochemistry. 1988 Jan 12;27(1):428–436. doi: 10.1021/bi00401a064. [DOI] [PubMed] [Google Scholar]
- Durkin J. T., Koeppe R. E., 2nd, Andersen O. S. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J Mol Biol. 1990 Jan 5;211(1):221–234. doi: 10.1016/0022-2836(90)90022-E. [DOI] [PubMed] [Google Scholar]
- Etchebest C., Pullman A. The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel. J Biomol Struct Dyn. 1985 Feb;2(5):859–870. doi: 10.1080/07391102.1985.10507605. [DOI] [PubMed] [Google Scholar]
- Fields C. G., Fields G. B., Noble R. L., Cross T. A. Solid phase peptide synthesis of 15N-gramicidins A, B, and C and high performance liquid chromatographic purification. Int J Pept Protein Res. 1989 Apr;33(4):298–303. doi: 10.1111/j.1399-3011.1989.tb01285.x. [DOI] [PubMed] [Google Scholar]
- Heitz F., Spach G., Trudelle Y. Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A. Biophys J. 1982 Oct;40(1):87–89. doi: 10.1016/S0006-3495(82)84462-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Jones D., Hayon E., Busath D. Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultraviolet light. Biochim Biophys Acta. 1986 Sep 25;861(1):62–66. doi: 10.1016/0005-2736(86)90371-8. [DOI] [PubMed] [Google Scholar]
- Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Mazet J. L., Andersen O. S. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry. 1990 Jan 16;29(2):512–520. doi: 10.1021/bi00454a027. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Paczkowski J. A., Whaley W. L. Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry. 1985 Jun 4;24(12):2822–2826. doi: 10.1021/bi00333a002. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Seelig J. Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry. 1988 Apr 5;27(7):2357–2364. doi: 10.1021/bi00407a017. [DOI] [PubMed] [Google Scholar]
- Mai W., Hu W., Wang C., Cross T. A. Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci. 1993 Apr;2(4):532–542. doi: 10.1002/pro.5560020405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazet J. L., Andersen O. S., Koeppe R. E., 2nd Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11. Biophys J. 1984 Jan;45(1):263–276. doi: 10.1016/S0006-3495(84)84153-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meers P. Location of tryptophans in membrane-bound annexins. Biochemistry. 1990 Apr 3;29(13):3325–3330. doi: 10.1021/bi00465a025. [DOI] [PubMed] [Google Scholar]
- Meulendijks G. H., Sonderkamp T., Dubois J. E., Nielen R. J., Kremers J. A., Buck H. M. The different influences of ether and ester phospholipids on the conformation of gramicidin A. A molecular modelling study. Biochim Biophys Acta. 1989 Mar 13;979(3):321–330. doi: 10.1016/0005-2736(89)90252-6. [DOI] [PubMed] [Google Scholar]
- Nicholson L. K., Cross T. A. Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. Biochemistry. 1989 Nov 28;28(24):9379–9385. doi: 10.1021/bi00450a019. [DOI] [PubMed] [Google Scholar]
- Nicholson L. K., Moll F., Mixon T. E., LoGrasso P. V., Lay J. C., Cross T. A. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'. Biochemistry. 1987 Oct 20;26(21):6621–6626. doi: 10.1021/bi00395a009. [DOI] [PubMed] [Google Scholar]
- O'Connell A. M., Koeppe R. E., 2nd, Andersen O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 1990 Nov 30;250(4985):1256–1259. doi: 10.1126/science.1700867. [DOI] [PubMed] [Google Scholar]
- Prosser R. S., Davis J. H., Dahlquist F. W., Lindorfer M. A. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry. 1991 May 14;30(19):4687–4696. doi: 10.1021/bi00233a008. [DOI] [PubMed] [Google Scholar]
- SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
- Sawyer D. B., Koeppe R. E., 2nd, Andersen O. S. Gramicidin single-channel properties show no solvent-history dependence. Biophys J. 1990 Mar;57(3):515–523. doi: 10.1016/S0006-3495(90)82567-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scarlata S. F. Effect of increased chain packing on gramicidin-lipid interactions. Biochemistry. 1991 Oct 15;30(41):9853–9859. doi: 10.1021/bi00105a007. [DOI] [PubMed] [Google Scholar]
- Smith R., Thomas D. E., Separovic F., Atkins A. R., Cornell B. A. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A. Biophys J. 1989 Aug;56(2):307–314. doi: 10.1016/S0006-3495(89)82677-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi H., Nemoto Y., Harada I. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy. Biochemistry. 1990 Feb 13;29(6):1572–1579. doi: 10.1021/bi00458a031. [DOI] [PubMed] [Google Scholar]
- Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss L. B., Koeppe R. E., 2nd Semisynthesis of linear gramicidins using diphenyl phosphorazidate (DPPA). Int J Pept Protein Res. 1985 Sep;26(3):305–310. doi: 10.1111/j.1399-3011.1985.tb03209.x. [DOI] [PubMed] [Google Scholar]
- Wilson M. L., Dahlquist F. W. Membrane protein conformational change dependent on the hydrophobic environment. Biochemistry. 1985 Apr 9;24(8):1920–1928. doi: 10.1021/bi00329a018. [DOI] [PubMed] [Google Scholar]
