Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Sep;69(3):1178–1190. doi: 10.1016/S0006-3495(95)79992-1

Calcium response of helper T lymphocytes to antigen-presenting cells in a single-cell assay.

N G Agrawal 1, J J Linderman 1
PMCID: PMC1236346  PMID: 8519972

Abstract

We developed a dynamic, single-cell assay involving alternating differential interference contrast and fluorescence microscopy, together with digital imaging, for both viewing the physical interaction of live helper T lymphocytes (Th cells) with antigen-presenting cells (APCs) and monitoring the increases in the intracellular free calcium concentration of the Th cell, an early event in Th cell activation. We obtained Th-APC conjugates by allowing the Th cells to migrate toward and interact with APCs that either settled nearby or had been micromanipulated in close proximity to the Th cells. Th cell motility played an important role in initiating Th-APC contacts but not in determining the Th cell calcium response. We found that the intracellular calcium responses of individual Th cells are heterogeneous and an all-or-none phenomenon, independent of antigen concentration. However, the fraction of Th-APC conjugates involving responding Th cells is an increasing function of the antigen concentration. Finally, we measured some characteristics of the developing Th-APC contact area. We used all of these data together with previously developed mathematical models to estimate that only 1 to 20 major histocompatibility class II-antigen complexes are required in the initial Th-APC contact area to elicit a Th cell calcium response.

Full text

PDF
1178

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. M., Babbitt B. P., Unanue E. R. T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev. 1987 Aug;98:171–187. doi: 10.1111/j.1600-065x.1987.tb00524.x. [DOI] [PubMed] [Google Scholar]
  2. Allen P. M., Strydom D. J., Unanue E. R. Processing of lysozyme by macrophages: identification of the determinant recognized by two T-cell hybridomas. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2489–2493. doi: 10.1073/pnas.81.8.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen P. M., Unanue E. R. Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J Immunol. 1984 Mar;132(3):1077–1079. [PubMed] [Google Scholar]
  4. Altman A., Coggeshall K. M., Mustelin T. Molecular events mediating T cell activation. Adv Immunol. 1990;48:227–360. doi: 10.1016/s0065-2776(08)60756-7. [DOI] [PubMed] [Google Scholar]
  5. Brodsky F. M., Guagliardi L. E. The cell biology of antigen processing and presentation. Annu Rev Immunol. 1991;9:707–744. doi: 10.1146/annurev.iy.09.040191.003423. [DOI] [PubMed] [Google Scholar]
  6. Concha M., Figueroa C. D., Caorsi I. Ultrastructural characteristics of the contact zones between Langerhans cells and lymphocytes. J Pathol. 1988 Sep;156(1):29–36. doi: 10.1002/path.1711560108. [DOI] [PubMed] [Google Scholar]
  7. Concha M., Vidal A., Garcés G., Figueroa C. D., Caorsi I. Physical interaction between Langerhans cells and T-lymphocytes during antigen presentation in vitro. J Invest Dermatol. 1993 Apr;100(4):429–434. doi: 10.1111/1523-1747.ep12472117. [DOI] [PubMed] [Google Scholar]
  8. Davis M. M., Chien Y. Topology and affinity of T-cell receptor mediated recognition of peptide-MHC complexes. Curr Opin Immunol. 1993 Feb;5(1):45–49. doi: 10.1016/0952-7915(93)90079-8. [DOI] [PubMed] [Google Scholar]
  9. Demotz S., Grey H. M., Sette A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science. 1990 Aug 31;249(4972):1028–1030. doi: 10.1126/science.2118680. [DOI] [PubMed] [Google Scholar]
  10. Dolmetsch R. E., Lewis R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J Gen Physiol. 1994 Mar;103(3):365–388. doi: 10.1085/jgp.103.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donnadieu E., Cefai D., Tan Y. P., Paresys G., Bismuth G., Trautmann A. Imaging early steps of human T cell activation by antigen-presenting cells. J Immunol. 1992 May 1;148(9):2643–2653. [PubMed] [Google Scholar]
  12. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  13. Dustin M. L. Two-way signalling through the LFA-1 lymphocyte adhesion receptor. Bioessays. 1990 Sep;12(9):421–427. doi: 10.1002/bies.950120905. [DOI] [PubMed] [Google Scholar]
  14. Glimcher L. H., Hamano T., Asofsky R., Sachs D. H., Pierres M., Samelson L. E., Sharrow S. O., Paul W. E. IA mutant functional antigen-presenting cell lines. J Immunol. 1983 May;130(5):2287–2294. [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Harding C. V., Roof R. W., Unanue E. R. Turnover of Ia-peptide complexes is facilitated in viable antigen-presenting cells: biosynthetic turnover of Ia vs. peptide exchange. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4230–4234. doi: 10.1073/pnas.86.11.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harding C. V., Unanue E. R. Antigen processing and intracellular Ia. Possible roles of endocytosis and protein synthesis in Ia function. J Immunol. 1989 Jan 1;142(1):12–19. [PubMed] [Google Scholar]
  18. Harding C. V., Unanue E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990 Aug 9;346(6284):574–576. doi: 10.1038/346574a0. [DOI] [PubMed] [Google Scholar]
  19. Janeway C. A., Jr, Golstein P. Lymphocyte activation and effector functions. Editorial overview. The role of cell surface molecules. Curr Opin Immunol. 1993 Jun;5(3):313–323. doi: 10.1016/0952-7915(93)90048-w. [DOI] [PubMed] [Google Scholar]
  20. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995 Jan 15;154(2):567–576. [PubMed] [Google Scholar]
  21. Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
  22. Knauer D. J., Wiley H. S., Cunningham D. D. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984 May 10;259(9):5623–5631. [PubMed] [Google Scholar]
  23. Kupfer A., Mosmann T. R., Kupfer H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):775–779. doi: 10.1073/pnas.88.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kupfer A., Singer S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu Rev Immunol. 1989;7:309–337. doi: 10.1146/annurev.iy.07.040189.001521. [DOI] [PubMed] [Google Scholar]
  25. Kupfer A., Singer S. J. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med. 1989 Nov 1;170(5):1697–1713. doi: 10.1084/jem.170.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lakey E. K., Casten L. A., Niebling W. L., Margoliash E., Pierce S. K. Time dependence of B cell processing and presentation of peptide and native protein antigens. J Immunol. 1988 May 15;140(10):3309–3314. [PubMed] [Google Scholar]
  27. Lambert L. E., Unanue E. R. Analysis of the interaction of peptide hen egg white lysozyme (34-45) with the I-Ak molecule. J Immunol. 1989 Aug 1;143(3):802–807. [PubMed] [Google Scholar]
  28. Linderman J. J., Harris L. J., Slakey L. L., Gross D. J. Charge-coupled device imaging of rapid calcium transients in cultured arterial smooth muscle cells. Cell Calcium. 1990 Feb-Mar;11(2-3):131–144. doi: 10.1016/0143-4160(90)90066-4. [DOI] [PubMed] [Google Scholar]
  29. Mahoney M. G., Randall C. J., Linderman J. J., Gross D. J., Slakey L. L. Independent pathways regulate the cytosolic [Ca2+] initial transient and subsequent oscillations in individual cultured arterial smooth muscle cells responding to extracellular ATP. Mol Biol Cell. 1992 May;3(5):493–505. doi: 10.1091/mbc.3.5.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nelson C. A., Petzold S. J., Unanue E. R. Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature. 1994 Sep 15;371(6494):250–252. doi: 10.1038/371250a0. [DOI] [PubMed] [Google Scholar]
  31. Ozaki S., Durum S. K., Muegge K., York-Jolley J., Berzofsky J. A. Production of T-T hybrids from T cell clones. Direct comparison between cloned T cells and T hybridoma cells derived from them. J Immunol. 1988 Jul 1;141(1):71–78. [PubMed] [Google Scholar]
  32. Premack B. A., Gardner P. Signal transduction by T-cell receptors: mobilization of Ca and regulation of Ca-dependent effector molecules. Am J Physiol. 1992 Dec;263(6 Pt 1):C1119–C1140. doi: 10.1152/ajpcell.1992.263.6.C1119. [DOI] [PubMed] [Google Scholar]
  33. Rothbard J. B., Gefter M. L. Interactions between immunogenic peptides and MHC proteins. Annu Rev Immunol. 1991;9:527–565. doi: 10.1146/annurev.iy.09.040191.002523. [DOI] [PubMed] [Google Scholar]
  34. Røtnes J. S., Bogen B. Ca2+ mobilization in physiologically stimulated single T cells gradually increases with peptide concentration (analog signaling). Eur J Immunol. 1994 Apr;24(4):851–858. doi: 10.1002/eji.1830240412. [DOI] [PubMed] [Google Scholar]
  35. Sanders V. M., Snyder J. M., Uhr J. W., Vitetta E. S. Characterization of the physical interaction between antigen-specific B and T cells. J Immunol. 1986 Oct 15;137(8):2395–2404. [PubMed] [Google Scholar]
  36. Segall M. Molecular and cellular aspects of T-lymphocyte responses to antigen. Transfusion. 1991 Feb;31(2):180–187. doi: 10.1046/j.1537-2995.1991.31291142952.x. [DOI] [PubMed] [Google Scholar]
  37. Selby D. M., Singer D. F., Anderson R. W., Coligan J. E., Linderman J. J., Nairn R. Antigen-presenting cell lines internalize peptide antigens via fluid-phase endocytosis. Cell Immunol. 1995 Jun;163(1):47–54. doi: 10.1006/cimm.1995.1097. [DOI] [PubMed] [Google Scholar]
  38. Shimizu Y., Shaw S. T lymphocyte adhesion molecules. Year Immunol. 1989;6:69–94. [PubMed] [Google Scholar]
  39. Singer D. F., Linderman J. J. Antigen processing and presentation: how can a foreign antigen be recognized in a sea of self proteins? J Theor Biol. 1991 Aug 7;151(3):385–404. doi: 10.1016/s0022-5193(05)80387-x. [DOI] [PubMed] [Google Scholar]
  40. Singer D. F., Linderman J. J. The relationship between antigen concentration, antigen internalization, and antigenic complexes: modeling insights into antigen processing and presentation. J Cell Biol. 1990 Jul;111(1):55–68. doi: 10.1083/jcb.111.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Singer S. J. Intercellular communication and cell-cell adhesion. Science. 1992 Mar 27;255(5052):1671–1677. doi: 10.1126/science.1313187. [DOI] [PubMed] [Google Scholar]
  42. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  43. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  44. Sykulev Y., Brunmark A., Jackson M., Cohen R. J., Peterson P. A., Eisen H. N. Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes. Immunity. 1994 Apr;1(1):15–22. doi: 10.1016/1074-7613(94)90005-1. [DOI] [PubMed] [Google Scholar]
  45. Vidard L., Rock K. L., Benacerraf B. Heterogeneity in antigen processing by different types of antigen-presenting cells. Effect of cell culture on antigen processing ability. J Immunol. 1992 Sep 15;149(6):1905–1911. [PubMed] [Google Scholar]
  46. Wacholtz M. C., Lipsky P. E. Anti-CD3-stimulated Ca2+ signal in individual human peripheral T cells. Activation correlates with a sustained increase in intracellular Ca2+1. J Immunol. 1993 Jun 15;150(12):5338–5349. [PubMed] [Google Scholar]
  47. Williams A. F., Beyers A. D. T-cell receptors. At grips with interactions. Nature. 1992 Apr 30;356(6372):746–747. doi: 10.1038/356746a0. [DOI] [PubMed] [Google Scholar]
  48. Zigmond S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977 Nov;75(2 Pt 1):606–616. doi: 10.1083/jcb.75.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES