Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Oct;69(4):1363–1371. doi: 10.1016/S0006-3495(95)80003-2

Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue.

C Wang 1, R A Lamb 1, L H Pinto 1
PMCID: PMC1236366  PMID: 8534806

Abstract

To test the hypothesis that transmembrane domain histidine residue 37 of the M2 ion channel of influenza A virus mediates the low pH-induced activation of the channel, the residue was changed to glycine, glutamate, arginine, or lysine. The wild-type and altered M2 proteins were expressed in oocytes of Xenopus laevis and membrane currents were recorded. The mass of protein expressed in individual oocytes was measured using quantitative immunoblotting and correlated with membrane currents. Oocytes expressing the M2-H37G protein had a voltage-independent conductance with current-voltage relationship similar to that of the wild-type M2 channel. The conductance of the M2-H37G protein was reversibly inhibited by the M2 ion channel blocker amantadine and was only very slightly modulated by changes in pHout over the range pH 5.4 to pH 8.2. Oocytes expressing the M2-H37E protein also had a voltage-independent conductance with a current-voltage relationship similar to that of the wild-type M2 channel. The conductance of the M2-H37E protein was reversibly inhibited by amantadine and was also only very slightly modulated by changes in pHout over the range pH 5.4 to pH 8.2. These slight alterations in conductance of the mutant ion channels on changes in pHout are in striking contrast to the 50-fold change in conductance seen for the wild-type M2 channel over the range pH 4.5 to pH 8.2. The specific activity of the M2-H37G protein was 1.36 +/- 0.37 microA/ng and the specific activity of the M2-H37E protein was 30 +/- 3 microA/ng at pH 6.2. These values of specific activity greatly exceed that of the wild-type protein at the same pH (0.16 + 0.01 micro A/ng). Oocytes expressing the M2-H37K and M2-H37R mutant proteins could not be studied because the oocytes did not survive more than a few hours in culture. Oocytes expressing the M2-H37E mutant protein also had a voltage-activated Cl- conductance that was observed only for oocytes that expressed a mass of protein exceeding a large threshold value. These results are consistent with protonation of histidine residue 37 as an essential step in the activation of the wild-type M2 ion channel.

Full text

PDF
1363

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman M. J., Wickman K. D., Clapham D. E. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):153–179. doi: 10.1085/jgp.103.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attali B., Guillemare E., Lesage F., Honoré E., Romey G., Lazdunski M., Barhanin J. The protein IsK is a dual activator of K+ and Cl- channels. Nature. 1993 Oct 28;365(6449):850–852. doi: 10.1038/365850a0. [DOI] [PubMed] [Google Scholar]
  3. Duff K. C., Ashley R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology. 1992 Sep;190(1):485–489. doi: 10.1016/0042-6822(92)91239-q. [DOI] [PubMed] [Google Scholar]
  4. Giffin K., Rader R. K., Marino M. H., Forgey R. W. Novel assay for the influenza virus M2 channel activity. FEBS Lett. 1995 Jan 9;357(3):269–274. doi: 10.1016/0014-5793(94)01369-c. [DOI] [PubMed] [Google Scholar]
  5. Holsinger L. J., Lamb R. A. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology. 1991 Jul;183(1):32–43. doi: 10.1016/0042-6822(91)90115-r. [DOI] [PubMed] [Google Scholar]
  6. Holsinger L. J., Nichani D., Pinto L. H., Lamb R. A. Influenza A virus M2 ion channel protein: a structure-function analysis. J Virol. 1994 Mar;68(3):1551–1563. doi: 10.1128/jvi.68.3.1551-1563.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holsinger L. J., Shaughnessy M. A., Micko A., Pinto L. H., Lamb R. A. Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol. 1995 Feb;69(2):1219–1225. doi: 10.1128/jvi.69.2.1219-1225.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kowdley G. C., Ackerman S. J., John J. E., 3rd, Jones L. R., Moorman J. R. Hyperpolarization-activated chloride currents in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):217–230. doi: 10.1085/jgp.103.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lamb R. A., Zebedee S. L., Richardson C. D. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985 Mar;40(3):627–633. doi: 10.1016/0092-8674(85)90211-9. [DOI] [PubMed] [Google Scholar]
  10. Ohuchi M., Cramer A., Vey M., Ohuchi R., Garten W., Klenk H. D. Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein. J Virol. 1994 Feb;68(2):920–926. doi: 10.1128/jvi.68.2.920-926.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pinto L. H., Holsinger L. J., Lamb R. A. Influenza virus M2 protein has ion channel activity. Cell. 1992 May 1;69(3):517–528. doi: 10.1016/0092-8674(92)90452-i. [DOI] [PubMed] [Google Scholar]
  12. Sugrue R. J., Bahadur G., Zambon M. C., Hall-Smith M., Douglas A. R., Hay A. J. Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO J. 1990 Nov;9(11):3469–3476. doi: 10.1002/j.1460-2075.1990.tb07555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sugrue R. J., Belshe R. B., Hay A. J. Palmitoylation of the influenza A virus M2 protein. Virology. 1990 Nov;179(1):51–56. doi: 10.1016/0042-6822(90)90272-s. [DOI] [PubMed] [Google Scholar]
  14. Sugrue R. J., Hay A. J. Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology. 1991 Feb;180(2):617–624. doi: 10.1016/0042-6822(91)90075-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takeuchi K., Lamb R. A. Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol. 1994 Feb;68(2):911–919. doi: 10.1128/jvi.68.2.911-919.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tashiro M., James I., Karri S., Wahn K., Tobita K., Klenk H. D., Rott R., Seto J. T. Pneumotropic revertants derived from a pantropic mutant, F1-R, of Sendai virus. Virology. 1991 Sep;184(1):227–234. doi: 10.1016/0042-6822(91)90839-4. [DOI] [PubMed] [Google Scholar]
  17. Tosteson M. T., Pinto L. H., Holsinger L. J., Lamb R. A. Reconstitution of the influenza virus M2 ion channel in lipid bilayers. J Membr Biol. 1994 Oct;142(1):117–126. doi: 10.1007/BF00233389. [DOI] [PubMed] [Google Scholar]
  18. Wang C., Lamb R. A., Pinto L. H. Direct measurement of the influenza A virus M2 protein ion channel activity in mammalian cells. Virology. 1994 Nov 15;205(1):133–140. doi: 10.1006/viro.1994.1628. [DOI] [PubMed] [Google Scholar]
  19. Wang C., Takeuchi K., Pinto L. H., Lamb R. A. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol. 1993 Sep;67(9):5585–5594. doi: 10.1128/jvi.67.9.5585-5594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zebedee S. L., Lamb R. A. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol. 1988 Aug;62(8):2762–2772. doi: 10.1128/jvi.62.8.2762-2772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES