Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Oct;69(4):1372–1381. doi: 10.1016/S0006-3495(95)80006-8

Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

M Winterhalter 1, H Bürner 1, S Marzinka 1, R Benz 1, J J Kasianowicz 1
PMCID: PMC1236367  PMID: 8534807

Abstract

We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface.

Full text

PDF
1372

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Lucy J. A. Osmotic forces in artificially induced cell fusion. Biochim Biophys Acta. 1986 Jun 13;858(1):206–216. doi: 10.1016/0005-2736(86)90308-1. [DOI] [PubMed] [Google Scholar]
  2. Aldwinckle T. J., Ahkong Q. F., Bangham A. D., Fisher D., Lucy J. A. Effects of poly(ethylene glycol) on liposomes and erythrocytes. Permeability changes and membrane fusion. Biochim Biophys Acta. 1982 Aug 12;689(3):548–560. doi: 10.1016/0005-2736(82)90313-3. [DOI] [PubMed] [Google Scholar]
  3. Arnold K., Gawrisch K. Effects of fusogenic agents on membrane hydration: a deuterium nuclear magnetic resonance approach. Methods Enzymol. 1993;220:143–157. doi: 10.1016/0076-6879(93)20080-m. [DOI] [PubMed] [Google Scholar]
  4. Arnold K., Herrmann A., Pratsch L., Gawrisch K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim Biophys Acta. 1985 May 28;815(3):515–518. doi: 10.1016/0005-2736(85)90381-5. [DOI] [PubMed] [Google Scholar]
  5. Arnold K., Pratsch L., Gawrisch K. Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase. Biochim Biophys Acta. 1983 Feb 9;728(1):121–128. doi: 10.1016/0005-2736(83)90444-3. [DOI] [PubMed] [Google Scholar]
  6. Arnold K., Zschoernig O., Barthel D., Herold W. Exclusion of poly(ethylene glycol) from liposome surfaces. Biochim Biophys Acta. 1990 Mar;1022(3):303–310. doi: 10.1016/0005-2736(90)90278-v. [DOI] [PubMed] [Google Scholar]
  7. Bezrukov S. M., Vodyanoy I., Parsegian V. A. Counting polymers moving through a single ion channel. Nature. 1994 Jul 28;370(6487):279–281. doi: 10.1038/370279a0. [DOI] [PubMed] [Google Scholar]
  8. Blume A. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim Biophys Acta. 1979 Oct 19;557(1):32–44. doi: 10.1016/0005-2736(79)90087-7. [DOI] [PubMed] [Google Scholar]
  9. Boni L. T., Hah J. S., Hui S. W., Mukherjee P., Ho J. T., Jung C. Y. Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol). Biochim Biophys Acta. 1984 Sep 5;775(3):409–418. doi: 10.1016/0005-2736(84)90198-6. [DOI] [PubMed] [Google Scholar]
  10. Burgess S. W., Massenburg D., Yates J., Lentz B. R. Poly(ethylene glycol)-induced lipid mixing but not fusion between synthetic phosphatidylcholine large unilamellar vesicles. Biochemistry. 1991 Apr 30;30(17):4193–4200. doi: 10.1021/bi00231a013. [DOI] [PubMed] [Google Scholar]
  11. Burgess S. W., McIntosh T. J., Lentz B. R. Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry. 1992 Mar 17;31(10):2653–2661. doi: 10.1021/bi00125a004. [DOI] [PubMed] [Google Scholar]
  12. Farnworth E. R., Wolynetz M. S., Modler H. W., Kramer J. K., Sauer F. D., Johnston K. M. Backfat and carcass composition of piglets fed milk replacers containing vegetable oil compared with sow-reared piglets. Reprod Nutr Dev. 1994;34(1):25–35. doi: 10.1051/rnd:19940103. [DOI] [PubMed] [Google Scholar]
  13. Fukunaga H., Katsumi M., Aoki Y., Oka S., Konishi R., Yukawa H., Kawaguchi T., Tamaki Y., Takifuji K. [5-FU concentration in tumor tissue and the antitumor effect in patients with gastric cancer after oral administration of UFT]. Gan To Kagaku Ryoho. 1987 Sep;14(9):2735–2739. [PubMed] [Google Scholar]
  14. Honda K., Maeda Y., Sasakawa S., Ohno H., Tsuchida E. Activities of cell fusion and lysis of the hybrid type of chemical fusogens. (I). Structure and function of the promotor of cell fusion. Biochem Biophys Res Commun. 1981 May 15;100(1):442–448. doi: 10.1016/s0006-291x(81)80116-7. [DOI] [PubMed] [Google Scholar]
  15. Krasilnikov O. V., Sabirov R. Z., Ternovsky V. I., Merzliak P. G., Muratkhodjaev J. N. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol. 1992 Sep;5(1-3):93–100. doi: 10.1111/j.1574-6968.1992.tb05891.x. [DOI] [PubMed] [Google Scholar]
  16. Lehtonen J. Y., Kinnunen P. K. Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys J. 1994 Jun;66(6):1981–1990. doi: 10.1016/S0006-3495(94)80991-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lentz B. R., McIntyre G. F., Parks D. J., Yates J. C., Massenburg D. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry. 1992 Mar 17;31(10):2643–2653. doi: 10.1021/bi00125a003. [DOI] [PubMed] [Google Scholar]
  18. Lentz B. R. Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids. 1994 Sep 6;73(1-2):91–106. doi: 10.1016/0009-3084(94)90176-7. [DOI] [PubMed] [Google Scholar]
  19. MacDonald R. I. Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose. Biochemistry. 1985 Jul 16;24(15):4058–4066. doi: 10.1021/bi00336a039. [DOI] [PubMed] [Google Scholar]
  20. Maggio B., Ahkong Q. F., Lucy J. A. Poly(ethylene glycol), surface potential and cell fusion. Biochem J. 1976 Sep 15;158(3):647–650. doi: 10.1042/bj1580647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Massenburg D., Lentz B. R. Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles. Biochemistry. 1993 Sep 7;32(35):9172–9180. doi: 10.1021/bi00086a024. [DOI] [PubMed] [Google Scholar]
  22. Ohki S., Arnold K. Surface dielectric constant, surface hydrophobicity and membrane fusion. J Membr Biol. 1990 Apr;114(3):195–203. doi: 10.1007/BF01869214. [DOI] [PubMed] [Google Scholar]
  23. Ohno H., Maeda Y., Tsuchida E. 1H-NMR study of the effect of synthetic polymers on the fluidity, transition temperature and fusion of dipalmitoyl phosphatidylcholine small vesicles. Biochim Biophys Acta. 1981 Mar 20;642(1):27–36. doi: 10.1016/0005-2736(81)90134-6. [DOI] [PubMed] [Google Scholar]
  24. Parente R. A., Lentz B. R. Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry. 1986 Oct 21;25(21):6678–6688. doi: 10.1021/bi00369a053. [DOI] [PubMed] [Google Scholar]
  25. Podgornik R., Rau D. C., Parsegian V. A. Parametrization of direct and soft steric-undulatory forces between DNA double helical polyelectrolytes in solutions of several different anions and cations. Biophys J. 1994 Apr;66(4):962–971. doi: 10.1016/S0006-3495(94)80877-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rebecchi M., Boguslavsky V., Boguslavsky L., McLaughlin S. Phosphoinositide-specific phospholipase C-delta 1: effect of monolayer surface pressure and electrostatic surface potentials on activity. Biochemistry. 1992 Dec 29;31(51):12748–12753. doi: 10.1021/bi00166a006. [DOI] [PubMed] [Google Scholar]
  27. Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sáez R., Alonso A., Villena A., Goñi F. M. Detergent-like properties of polyethyleneglycols in relation to model membranes. FEBS Lett. 1982 Jan 25;137(2):323–326. doi: 10.1016/0014-5793(82)80376-1. [DOI] [PubMed] [Google Scholar]
  29. Tilcock C. P., Fisher D. Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta. 1979 Oct 19;557(1):53–61. doi: 10.1016/0005-2736(79)90089-0. [DOI] [PubMed] [Google Scholar]
  30. Tilcock C. P., Fisher D. The interaction of phospholipid membranes with poly(ethylene glycol). Vesicle aggregation and lipid exchange. Biochim Biophys Acta. 1982 Jun 14;688(2):645–652. doi: 10.1016/0005-2736(82)90375-3. [DOI] [PubMed] [Google Scholar]
  31. Viguera A. R., Mencía M., Goñi F. M. Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Biochemistry. 1993 Apr 13;32(14):3708–3713. doi: 10.1021/bi00065a024. [DOI] [PubMed] [Google Scholar]
  32. Vodyanoy I., Bezrukov S. M., Parsegian V. A. Probing alamethicin channels with water-soluble polymers. Size-modulated osmotic action. Biophys J. 1993 Nov;65(5):2097–2105. doi: 10.1016/S0006-3495(93)81245-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vodyanoy I., Bezrukov S. M. Sizing of an ion pore by access resistance measurements. Biophys J. 1992 Apr;62(1):10–11. doi: 10.1016/S0006-3495(92)81762-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woodle M. C., Lasic D. D. Sterically stabilized liposomes. Biochim Biophys Acta. 1992 Aug 14;1113(2):171–199. doi: 10.1016/0304-4157(92)90038-c. [DOI] [PubMed] [Google Scholar]
  35. Zimmerberg J., Parsegian V. A. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature. 1986 Sep 4;323(6083):36–39. doi: 10.1038/323036a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES