Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Oct;69(4):1382–1386. doi: 10.1016/S0006-3495(95)80007-X

A Monte Carlo model of fd and Pf1 coat proteins in lipid membranes.

M Milik 1, J Skolnick 1
PMCID: PMC1236368  PMID: 8534808

Abstract

A Monte Carlo Dynamics simulation was used to investigate the behavior of filamentous bacteriophage coat proteins in a model membrane environment. Our simulation agrees with the previous experimental observations that despite the low sequence similarity between the major coat proteins of Pf1 and fd bacteriophages, their structure in the membrane environment is very similar. These results support the hypothesis that the hydrophobic effect exerts an important influence on membrane protein structure. The model may also be used for modeling the insertion and transport processes in protein-membrane systems. The example of fd protein was also used as a test of sensitivity of our model to temperature, thickness of the hydrocarbon phase, and simulation time. In all cases, the results were independent (over the tested range) of the particular values of the parameters.

Full text

PDF
1382

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  2. Clack B. A., Gray D. M. A CD determination of the alpha-helix contents of the coat proteins of four filamentous bacteriophages: fd, IKe, Pf1, and Pf3. Biopolymers. 1989 Nov;28(11):1861–1873. doi: 10.1002/bip.360281103. [DOI] [PubMed] [Google Scholar]
  3. Gavel Y., Steppuhn J., Herrmann R., von Heijne G. The 'positive-inside rule' applies to thylakoid membrane proteins. FEBS Lett. 1991 Apr 22;282(1):41–46. doi: 10.1016/0014-5793(91)80440-e. [DOI] [PubMed] [Google Scholar]
  4. Gregoret L. M., Cohen F. E. Novel method for the rapid evaluation of packing in protein structures. J Mol Biol. 1990 Feb 20;211(4):959–974. doi: 10.1016/0022-2836(90)90086-2. [DOI] [PubMed] [Google Scholar]
  5. Jacobs R. E., White S. H. Lipid bilayer perturbations induced by simple hydrophobic peptides. Biochemistry. 1987 Sep 22;26(19):6127–6134. doi: 10.1021/bi00393a027. [DOI] [PubMed] [Google Scholar]
  6. McDonnell P. A., Shon K., Kim Y., Opella S. J. fd coat protein structure in membrane environments. J Mol Biol. 1993 Oct 5;233(3):447–463. doi: 10.1006/jmbi.1993.1523. [DOI] [PubMed] [Google Scholar]
  7. Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
  8. Nakashima Y., Wiseman R. L., Konigsberg W., Marvin D. A. Primary structure and sidechain interactions of PFL filamentous bacterial virus coat protein. Nature. 1975 Jan 3;253(5486):68–71. doi: 10.1038/253068a0. [DOI] [PubMed] [Google Scholar]
  9. Roseman M. A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol. 1988 Apr 5;200(3):513–522. doi: 10.1016/0022-2836(88)90540-2. [DOI] [PubMed] [Google Scholar]
  10. Rowitch D. H., Hunter G. J., Perham R. N. Variable electrostatic interaction between DNA and coat protein in filamentous bacteriophage assembly. J Mol Biol. 1988 Dec 5;204(3):663–674. doi: 10.1016/0022-2836(88)90363-4. [DOI] [PubMed] [Google Scholar]
  11. von Heijne G., Abrahmsén L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett. 1989 Feb 27;244(2):439–446. doi: 10.1016/0014-5793(89)80579-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES