Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Oct;69(4):1447–1455. doi: 10.1016/S0006-3495(95)80014-7

Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces.

P Nollert 1, H Kiefer 1, F Jähnig 1
PMCID: PMC1236375  PMID: 8534815

Abstract

The absorption and spreading behavior of lipid vesicles composed of either palmitoyloleoylphosphatidylcholine (POPC) or Escherichia coli lipid upon contact with a glass surface was examined by fluorescence measurements. Fluorescently labeled lipids were used to determine 1) the amount of lipid adsorbed at the surface, 2) the extent of fusion of the vesicles upon contact with the surface, 3) the ability of the adsorbed lipids to undergo lateral diffusion, and 4) the accessibility of the adsorbed lipids by external water soluble molecules. The results of these measurements indicate that POPC vesicles spread on the surface and form a supported planar bilayer, whereas E. coli lipid vesicles adsorb to the surface and form a supported vesicle layer. Supported planar bilayers were found to be permeable for small molecules, whereas supported vesicles were impermeable and thus represented immobilized, topologically separate compartments.

Full text

PDF
1447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayerl T. M., Bloom M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J. 1990 Aug;58(2):357–362. doi: 10.1016/S0006-3495(90)82382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen F. S., Akabas M. H., Zimmerberg J., Finkelstein A. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J Cell Biol. 1984 Mar;98(3):1054–1062. doi: 10.1083/jcb.98.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Döring K., Konermann L., Surrey T., Jähnig F. A long lifetime component in the tryptophan fluorescence of some proteins. Eur Biophys J. 1995;23(6):423–432. doi: 10.1007/BF00196829. [DOI] [PubMed] [Google Scholar]
  5. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalb E., Engel J., Tamm L. K. Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1990 Feb 13;29(6):1607–1613. doi: 10.1021/bi00458a036. [DOI] [PubMed] [Google Scholar]
  7. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  8. Kiefer H., Klee B., John E., Stierhof Y. D., Jähnig F. Biosensors based on membrane transport proteins. Biosens Bioelectron. 1991;6(3):233–237. doi: 10.1016/0956-5663(91)80008-l. [DOI] [PubMed] [Google Scholar]
  9. Marcelja S. Electrostatics of membrane adhesion. Biophys J. 1992 May;61(5):1117–1121. doi: 10.1016/S0006-3495(92)81921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  11. McIntyre J. C., Sleight R. G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991 Dec 24;30(51):11819–11827. doi: 10.1021/bi00115a012. [DOI] [PubMed] [Google Scholar]
  12. Mou J., Yang J., Shao Z. Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers. Biochemistry. 1994 Apr 19;33(15):4439–4443. doi: 10.1021/bi00181a001. [DOI] [PubMed] [Google Scholar]
  13. Nakanishi M., Matsumoto K., Takahashi S. Binding of macrophages and phospholipid flip-flop in supported lipid bilayers. FEBS Lett. 1985 Nov 11;192(1):66–70. doi: 10.1016/0014-5793(85)80044-2. [DOI] [PubMed] [Google Scholar]
  14. Naumann C., Brumm T., Bayerl T. M. Phase transition behavior of single phosphatidylcholine bilayers on a solid spherical support studied by DSC, NMR and FT-IR. Biophys J. 1992 Nov;63(5):1314–1319. doi: 10.1016/S0006-3495(92)81708-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pearce K. H., Hiskey R. G., Thompson N. L. Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1992 Jul 7;31(26):5983–5995. doi: 10.1021/bi00141a005. [DOI] [PubMed] [Google Scholar]
  16. Poglitsch C. L., Sumner M. T., Thompson N. L. Binding of IgG to MoFc gamma RII purified and reconstituted into supported planar membranes as measured by total internal reflection fluorescence microscopy. Biochemistry. 1991 Jul 9;30(27):6662–6671. doi: 10.1021/bi00241a005. [DOI] [PubMed] [Google Scholar]
  17. Radin N. S. Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol. 1981;72:5–7. doi: 10.1016/s0076-6879(81)72003-2. [DOI] [PubMed] [Google Scholar]
  18. Ramsden J. J., Schneider P. Membrane insertion and antibody recognition of a glycosylphosphatidylinositol-anchored protein: an optical study. Biochemistry. 1993 Jan 19;32(2):523–529. doi: 10.1021/bi00053a017. [DOI] [PubMed] [Google Scholar]
  19. Richardson J. S., Richardson D. C., Tweedy N. B., Gernert K. M., Quinn T. P., Hecht M. H., Erickson B. W., Yan Y., McClain R. D., Donlan M. E. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. Biophys J. 1992 Nov;63(5):1185–1209. [PMC free article] [PubMed] [Google Scholar]
  20. Seifert K., Fendler K., Bamberg E. Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys J. 1993 Feb;64(2):384–391. doi: 10.1016/S0006-3495(93)81379-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A. 1990 Oct 15;42(8):4768–4771. doi: 10.1103/physreva.42.4768. [DOI] [PubMed] [Google Scholar]
  22. Stelzle M., Sackmann E. Sensitive detection of protein adsorption to supported lipid bilayers by frequency-dependent capacitance measurements and microelectrophoresis. Biochim Biophys Acta. 1989 May 19;981(1):135–142. doi: 10.1016/0005-2736(89)90091-6. [DOI] [PubMed] [Google Scholar]
  23. Striebel C., Brecht A., Gauglitz G. Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosens Bioelectron. 1994;9(2):139–146. doi: 10.1016/0956-5663(94)80105-3. [DOI] [PubMed] [Google Scholar]
  24. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  25. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tendian S. W., Lentz B. R., Thompson N. L. Evidence from total internal reflection fluorescence microscopy for calcium-independent binding of prothrombin to negatively charged planar phospholipid membranes. Biochemistry. 1991 Nov 12;30(45):10991–10999. doi: 10.1021/bi00109a026. [DOI] [PubMed] [Google Scholar]
  27. Wright J. K., Overath P. Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport. Eur J Biochem. 1984 Feb 1;138(3):497–508. doi: 10.1111/j.1432-1033.1984.tb07944.x. [DOI] [PubMed] [Google Scholar]
  28. Zasadzinski J. A., Helm C. A., Longo M. L., Weisenhorn A. L., Gould S. A., Hansma P. K. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys J. 1991 Mar;59(3):755–760. doi: 10.1016/S0006-3495(91)82288-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES