Abstract
Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction. In the first heating scan, although a peak appears at 65.80C in the DSC thermogram, the hydrocarbon chain packing gradually converts from an orthorhombic lattice to a hexagonal lattice near 52 degree C, and successively the chain melting phase transition occurs near 670C. In the second heating scan, the hydrocarbon chains are packed in a hexagonal lattice over the whole temperature range and the chain melting phase transition occurs near 63.5 degree C. Therefore,the Ca2+-DMPA complex at pH 4 has a metastable state. The metastable state transforms to a stable state by maintaining the complex at pH 4 for about 90 h at 200C.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bicknell-Brown E., Brown K. G., Borchman D. Atomic and Raman spectroscopy of the dipalmitoylphosphatidic acid-calcium complex and phase transitions. Biochim Biophys Acta. 1986 Nov 6;862(1):134–140. doi: 10.1016/0005-2736(86)90477-3. [DOI] [PubMed] [Google Scholar]
- Blume A., Tuchtenhagen J. Thermodynamics of ion binding to phosphatidic acid bilayers. Titration calorimetry of the heat of dissociation of DMPA. Biochemistry. 1992 May 19;31(19):4636–4642. doi: 10.1021/bi00134a014. [DOI] [PubMed] [Google Scholar]
- Boughriet A., Ladjadj M., Bicknell-Brown E. Calcium-induced condensation-reorganization phenomena in multilamellar vesicles of phosphatidic acid. pH potentiometric and 31P-NMR, Raman and ESR spectroscopic studies. Biochim Biophys Acta. 1988 Apr 22;939(3):523–532. doi: 10.1016/0005-2736(88)90099-5. [DOI] [PubMed] [Google Scholar]
- Caffrey M., Feigenson G. W. Influence of metal ions on the phase properties of phosphatidic acid in combination with natural and synthetic phosphatidylcholines: an X-ray diffraction study using synchrotron radiation. Biochemistry. 1984 Jan 17;23(2):323–331. doi: 10.1021/bi00297a023. [DOI] [PubMed] [Google Scholar]
- Chang H., Epand R. M. The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethanolamine. Biochim Biophys Acta. 1983 Mar 9;728(3):319–324. doi: 10.1016/0005-2736(83)90501-1. [DOI] [PubMed] [Google Scholar]
- Chen S. C., Sturtevant J. M., Gaffney B. J. Scanning calorimetric evidence for a third phase transition in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5060–5063. doi: 10.1073/pnas.77.9.5060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis E. A., Rhee S. G., Billah M. M., Hannun Y. A. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J. 1991 Apr;5(7):2068–2077. doi: 10.1096/fasebj.5.7.1901288. [DOI] [PubMed] [Google Scholar]
- Eklund K. K., Vuorinen J., Mikkola J., Virtanen J. A., Kinnunen P. K. Ca2+-induced lateral phase separation in phosphatidic acid/phosphatidylcholine monolayers as revealed by fluorescence microscopy. Biochemistry. 1988 May 3;27(9):3433–3437. doi: 10.1021/bi00409a046. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Gabel B., Epand R. F., Sen A., Hui S. W., Muga A., Surewicz W. K. Formation of a new stable phase of phosphatidylglycerols. Biophys J. 1992 Aug;63(2):327–332. doi: 10.1016/S0006-3495(92)81618-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farren S. B., Hope M. J., Cullis P. R. Polymorphic phase preferences of phosphatidic acid: A 31P and 2H NMR study. Biochem Biophys Res Commun. 1983 Mar 16;111(2):675–682. doi: 10.1016/0006-291x(83)90359-5. [DOI] [PubMed] [Google Scholar]
- Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J Mol Biol. 1976 Jan 25;100(3):345–358. doi: 10.1016/s0022-2836(76)80067-8. [DOI] [PubMed] [Google Scholar]
- Füldner H. H. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry. 1981 Sep 29;20(20):5707–5710. doi: 10.1021/bi00523a011. [DOI] [PubMed] [Google Scholar]
- Graham I., Gagné J., Silvius J. R. Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry. 1985 Dec 3;24(25):7123–7131. doi: 10.1021/bi00346a016. [DOI] [PubMed] [Google Scholar]
- Hauser H., Shipley G. G. Crystallization of phosphatidylserine bilayers induced by lithium. J Biol Chem. 1981 Nov 25;256(22):11377–11380. [PubMed] [Google Scholar]
- Hauser H., Shipley G. G. Interactions of divalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1984 Jan 3;23(1):34–41. doi: 10.1021/bi00296a006. [DOI] [PubMed] [Google Scholar]
- Kodama M., Miyata T., Yokoyama T. Crystalline cylindrical structures of Na(+)-bound dimyristoylphosphatidylglycerol as revealed by microcalorimetry and electron microscopy. Biochim Biophys Acta. 1993 Jun 12;1168(2):243–248. [PubMed] [Google Scholar]
- Kouaouci R., Silvius J. R., Graham I., Pézolet M. Calcium-induced lateral phase separations in phosphatidylcholine-phosphatidic acid mixtures. A Raman spectroscopic study. Biochemistry. 1985 Dec 3;24(25):7132–7140. doi: 10.1021/bi00346a017. [DOI] [PubMed] [Google Scholar]
- Laroche G., Dufourc E. J., Dufourcq J., Pézolet M. Structure and dynamics of dimyristoylphosphatidic acid/calcium complexes by 2H NMR, infrared, spectroscopies and small-angle x-ray diffraction. Biochemistry. 1991 Mar 26;30(12):3105–3114. doi: 10.1021/bi00226a018. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
- Liao M. J., Prestegard J. H. Structural properties of a Ca2+-phosphatidic acid complex: small angle X-ray scattering and calorimetric results. Biochim Biophys Acta. 1981 Jul 6;645(1):149–156. doi: 10.1016/0005-2736(81)90523-x. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
- Ohki K. Ca2+-induced lateral phase separation in ternary mixtures of phosphatidic acid, phosphatidylcholine, and phosphatidylethanolamine inferred by calorimetry. J Biochem. 1988 Jul;104(1):14–17. doi: 10.1093/oxfordjournals.jbchem.a122410. [DOI] [PubMed] [Google Scholar]
- Ohki K., Nagaoka S., Sogami M., Nozawa Y. Ca2+-translocation activities of phosphatidylinositol, diacylglycerol and phosphatidic acid inferred by quin-2 in artificial membrane systems. Chem Phys Lipids. 1986 Feb;39(3):237–249. doi: 10.1016/0009-3084(86)90013-7. [DOI] [PubMed] [Google Scholar]
- Papahadjopoulos D., Vail W. J., Pangborn W. A., Poste G. Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim Biophys Acta. 1976 Oct 5;448(2):265–283. doi: 10.1016/0005-2736(76)90241-8. [DOI] [PubMed] [Google Scholar]
- Seddon J. M., Harlos K., Marsh D. Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water. J Biol Chem. 1983 Mar 25;258(6):3850–3854. [PubMed] [Google Scholar]
- Smaal E. B., Mandersloot J. G., Demel R. A., de Kruijff B., de Gier J. Consequences of the interaction of calcium with dioleoylphosphatidate-containing model membranes: calcium-membrane and membrane-membrane interactions. Biochim Biophys Acta. 1987 Feb 12;897(1):180–190. doi: 10.1016/0005-2736(87)90326-9. [DOI] [PubMed] [Google Scholar]
- Takahashi H., Matuoka S., Kato S., Ohki K., Hatta I. Effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol bilayers. Biochim Biophys Acta. 1992 Sep 21;1110(1):29–36. doi: 10.1016/0005-2736(92)90290-3. [DOI] [PubMed] [Google Scholar]
- Takahashi H., Matuoka S., Kato S., Ohki K., Hatta I. Electrostatic interaction of poly(L-lysine) with dipalmitoylphosphatidic acid studied by X-ray diffraction. Biochim Biophys Acta. 1991 Nov 4;1069(2):229–234. doi: 10.1016/0005-2736(91)90129-v. [DOI] [PubMed] [Google Scholar]
- Tenchov B. G., Yao H., Hatta I. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases. Biophys J. 1989 Oct;56(4):757–768. doi: 10.1016/S0006-3495(89)82723-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torbet J., Wilkins M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol. 1976 Oct 21;62(2):447–458. doi: 10.1016/0022-5193(76)90129-6. [DOI] [PubMed] [Google Scholar]
- Tristram-Nagle S., Suter R. M., Sun W. J., Nagle J. F. Kinetics of subgel formation in DPPC: X-ray diffraction proves nucleation-growth hypothesis. Biochim Biophys Acta. 1994 Apr 20;1191(1):14–20. doi: 10.1016/0005-2736(94)90227-5. [DOI] [PubMed] [Google Scholar]
- Tyäuble H., Teubner M., Woolley P., Eibl H. Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys Chem. 1976 Jul;4(4):319–342. doi: 10.1016/0301-4622(76)80013-0. [DOI] [PubMed] [Google Scholar]
- Vincent J. S., Levin I. W. Raman spectroscopic studies of dimyristoylphosphatidic acid and its interactions with ferricytochrome c in cationic binary and ternary lipid-protein complexes. Biophys J. 1991 May;59(5):1007–1021. doi: 10.1016/S0006-3495(91)82316-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson D. A., McIntosh T. J. A subtransition in a phospholipid with a net charge, dipalmitoylphosphatidylglycerol. Biochemistry. 1986 Jan 28;25(2):295–298. doi: 10.1021/bi00350a002. [DOI] [PubMed] [Google Scholar]
- van Dijck P. W., de Kruijff B., Verkleij A. J., van Deenen L. L., de Gier J. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim Biophys Acta. 1978 Sep 11;512(1):84–96. doi: 10.1016/0005-2736(78)90219-5. [DOI] [PubMed] [Google Scholar]
