Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Nov;69(5):1819–1829. doi: 10.1016/S0006-3495(95)80052-4

Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes.

K Shimbo 1, D L Brassard 1, R A Lamb 1, L H Pinto 1
PMCID: PMC1236415  PMID: 8580325

Abstract

A slowly activated, inward current could be evoked from Xenopus oocytes in response to application of a strong (approximately -190 mV) hyperpolarizing pulse. However, a much lesser hyperpolarization (approximately -130 mV) was able to evoke a similar current from oocytes that expressed the cellular proteins IsK and phospholemman, the synthetic protein SYN-C, and the NB protein of influenza B virus. All of these currents were carried principally by Cl-, and they had similar blocker profiles. The time course (the function of time that described the current increase during a hyperpolarizing voltage-clamp pulse, i.e., activation kinetics) varied from one batch of oocytes to another, but did not vary within each batch with the type of protein expressed. This slowly activated, inward current evoked by hyperpolarization to approximately -130 mV required the expression of a characteristic, minimum level of each of the proteins IsK, SYN-C, and NB. However, not every integral membrane protein expressed in oocytes allowed substantial inward currents to be generated at -130 mV. Oocytes that expressed large amounts of the M2 protein of influenza A virus, which is known to possess an intrinsic cation channel activity, did not display a Cl- current when hyperpolarized to -130 mV. These results suggest that expression of any of the four proteins-IsK, phospholemman, SYN-C, or NB- acts as an activator of an endogenous Cl- conductance.

Full text

PDF
1819

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman M. J., Wickman K. D., Clapham D. E. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):153–179. doi: 10.1085/jgp.103.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attali B., Guillemare E., Lesage F., Honoré E., Romey G., Lazdunski M., Barhanin J. The protein IsK is a dual activator of K+ and Cl- channels. Nature. 1993 Oct 28;365(6449):850–852. doi: 10.1038/365850a0. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal E. M., Kaczmarek L. K. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes. J Neurosci. 1994 May;14(5 Pt 2):3097–3105. doi: 10.1523/JNEUROSCI.14-05-03097.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duff K. C., Ashley R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology. 1992 Sep;190(1):485–489. doi: 10.1016/0042-6822(92)91239-q. [DOI] [PubMed] [Google Scholar]
  5. Folander K., Smith J. S., Antanavage J., Bennett C., Stein R. B., Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2975–2979. doi: 10.1073/pnas.87.8.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldstein S. A., Miller C. Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron. 1991 Sep;7(3):403–408. doi: 10.1016/0896-6273(91)90292-8. [DOI] [PubMed] [Google Scholar]
  7. Holsinger L. J., Lamb R. A. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology. 1991 Jul;183(1):32–43. doi: 10.1016/0042-6822(91)90115-r. [DOI] [PubMed] [Google Scholar]
  8. Isom L. L., De Jongh K. S., Catterall W. A. Auxiliary subunits of voltage-gated ion channels. Neuron. 1994 Jun;12(6):1183–1194. doi: 10.1016/0896-6273(94)90436-7. [DOI] [PubMed] [Google Scholar]
  9. Kowdley G. C., Ackerman S. J., John J. E., 3rd, Jones L. R., Moorman J. R. Hyperpolarization-activated chloride currents in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):217–230. doi: 10.1085/jgp.103.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  11. Lear J. D., Wasserman Z. R., DeGrado W. F. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988 May 27;240(4856):1177–1181. doi: 10.1126/science.2453923. [DOI] [PubMed] [Google Scholar]
  12. Moorman J. R., Palmer C. J., John J. E., 3rd, Durieux M. E., Jones L. R. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem. 1992 Jul 25;267(21):14551–14554. [PubMed] [Google Scholar]
  13. Parker I., Miledi R. A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1988 Mar 22;233(1271):191–199. doi: 10.1098/rspb.1988.0018. [DOI] [PubMed] [Google Scholar]
  14. Paterson R. G., Lamb R. A. Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor. Cell. 1987 Feb 13;48(3):441–452. doi: 10.1016/0092-8674(87)90195-4. [DOI] [PubMed] [Google Scholar]
  15. Peres A., Bernardini G. A hyperpolarization-activated chloride current in Xenopus laevis oocytes under voltage-clamp. Pflugers Arch. 1983 Oct;399(2):157–159. doi: 10.1007/BF00663914. [DOI] [PubMed] [Google Scholar]
  16. Pinto L. H., Holsinger L. J., Lamb R. A. Influenza virus M2 protein has ion channel activity. Cell. 1992 May 1;69(3):517–528. doi: 10.1016/0092-8674(92)90452-i. [DOI] [PubMed] [Google Scholar]
  17. Pragnell M., Snay K. J., Trimmer J. S., MacLusky N. J., Naftolin F., Kaczmarek L. K., Boyle M. B. Estrogen induction of a small, putative K+ channel mRNA in rat uterus. Neuron. 1990 May;4(5):807–812. doi: 10.1016/0896-6273(90)90207-v. [DOI] [PubMed] [Google Scholar]
  18. Shaw M. W., Choppin P. W., Lamb R. A. A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4879–4883. doi: 10.1073/pnas.80.16.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takumi T., Ohkubo H., Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988 Nov 18;242(4881):1042–1045. doi: 10.1126/science.3194754. [DOI] [PubMed] [Google Scholar]
  20. Tosteson M. T., Auld D. S., Tosteson D. C. Voltage-gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide. Proc Natl Acad Sci U S A. 1989 Jan;86(2):707–710. doi: 10.1073/pnas.86.2.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tosteson M. T., Caulfield M. P., Levy J. J., Rosenblatt M., Tosteson D. C. The synthetic precursor specific region of pre-pro-parathyroid hormone forms ion channels in lipid bilayers. Biosci Rep. 1988 Apr;8(2):173–183. doi: 10.1007/BF01116462. [DOI] [PubMed] [Google Scholar]
  22. Tosteson M. T., Pinto L. H., Holsinger L. J., Lamb R. A. Reconstitution of the influenza virus M2 ion channel in lipid bilayers. J Membr Biol. 1994 Oct;142(1):117–126. doi: 10.1007/BF00233389. [DOI] [PubMed] [Google Scholar]
  23. Varnum M. D., Maylie J., Busch A., Adelman J. P. Persistent activation of min K channels by chemical cross-linking. Neuron. 1995 Feb;14(2):407–412. doi: 10.1016/0896-6273(95)90296-1. [DOI] [PubMed] [Google Scholar]
  24. Wang C., Lamb R. A., Pinto L. H. Direct measurement of the influenza A virus M2 protein ion channel activity in mammalian cells. Virology. 1994 Nov 15;205(1):133–140. doi: 10.1006/viro.1994.1628. [DOI] [PubMed] [Google Scholar]
  25. Williams M. A., Lamb R. A. Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region. Mol Cell Biol. 1986 Dec;6(12):4317–4328. doi: 10.1128/mcb.6.12.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zebedee S. L., Lamb R. A. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol. 1988 Aug;62(8):2762–2772. doi: 10.1128/jvi.62.8.2762-2772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES