Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Dec;69(6):2558–2562. doi: 10.1016/S0006-3495(95)80126-8

Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer.

K Tu 1, D J Tobias 1, M L Klein 1
PMCID: PMC1236493  PMID: 8599662

Abstract

We report a constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal (L alpha) phase bilayer of dipalmitoylphosphatidylcholine at 50 degrees C and 28 water molecules/lipid. We have shown that the bilayer is stable throughout the 1550-ps simulation and have demonstrated convergence of the system dimensions. Several important aspects of the bilayer structure have been investigated and compared favorably with experimental results. For example, the average positions of specific carbon atoms along the bilayer normal agree well with neutron diffraction data, and the electron density profile is in accord with x-ray diffraction results. The hydrocarbon chain deuterium order parameters agree reasonably well with NMR results for the middles of the chains, but the simulation predicts too much order at the chain ends. In spite of the deviations in the order parameters, the hydrocarbon chain packing density appears to be essentially correct, inasmuch as the area/lipid and bilayer thickness are in agreement with the most refined experimental estimates. The deuterium order parameters for the glycerol and choline groups, as well as the phosphorus chemical shift anisotropy, are in qualitative agreement with those extracted from NMR measurements.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  2. Damodaran K. V., Merz K. M., Jr, Gaber B. P. Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry. 1992 Aug 25;31(33):7656–7664. doi: 10.1021/bi00148a029. [DOI] [PubMed] [Google Scholar]
  3. Egberts E., Marrink S. J., Berendsen H. J. Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J. 1994;22(6):423–436. doi: 10.1007/BF00180163. [DOI] [PubMed] [Google Scholar]
  4. Gally H. U., Niederberger W., Seelig J. Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry. 1975 Aug 12;14(16):3647–3652. doi: 10.1021/bi00687a021. [DOI] [PubMed] [Google Scholar]
  5. Huang P., Perez J. J., Loew G. H. Molecular dynamics simulations of phospholipid bilayers. J Biomol Struct Dyn. 1994 Apr;11(5):927–956. doi: 10.1080/07391102.1994.10508045. [DOI] [PubMed] [Google Scholar]
  6. Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
  7. Kohler S. J., Klein M. P. 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: Applications to head-group motion in model membranes. Biochemistry. 1976 Mar 9;15(5):967–974. doi: 10.1021/bi00650a004. [DOI] [PubMed] [Google Scholar]
  8. Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nagle J. F., Wiener M. C. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Jul 7;942(1):1–10. doi: 10.1016/0005-2736(88)90268-4. [DOI] [PubMed] [Google Scholar]
  10. Neiderberger W., Seelig J. Phosphorus-31 chemical shift anisotropy in unsonicated phospholipid bilayers. J Am Chem Soc. 1976 Jun 9;98(12):3704–3706. doi: 10.1021/ja00428a053. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  12. Robinson A. J., Richards W. G., Thomas P. J., Hann M. M. Head group and chain behavior in biological membranes: a molecular dynamics computer simulation. Biophys J. 1994 Dec;67(6):2345–2354. doi: 10.1016/S0006-3495(94)80720-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
  14. Seelig A., Seelig J. Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. Biochim Biophys Acta. 1975 Sep 16;406(1):1–5. doi: 10.1016/0005-2736(75)90037-1. [DOI] [PubMed] [Google Scholar]
  15. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  16. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  17. Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
  18. Zaccai G., Büldt G., Seelig A., Seelig J. Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol. 1979 Nov 15;134(4):693–706. doi: 10.1016/0022-2836(79)90480-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES