Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Dec;69(6):2800–2807. doi: 10.1016/S0006-3495(95)80153-0

Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing.

C M Lo 1, C R Keese 1, I Giaever 1
PMCID: PMC1236517  PMID: 8599686

Abstract

Transepithelial impedance of Madin-Darby canine kidney cell layers is measured by a new instrumental method, referred to as electric cell-substrate impedance sensing. In this method, cells are cultured on small evaporated gold electrodes, and the impedance is measured in the frequency range 20-50,000 Hz by a small probing current. A model for impedance analysis of epithelial cells measured by this method is developed. The model considers three different pathways for the current flowing from the electrode through the cell layer: (1) in through the basal and out through the apical membrane, (2) in through the lateral and out through the apical membrane, and (3) between the cells through the paracellular space. By comparing model calculation with experimental impedance data, several morphological and cellular parameters can be determined: (1) the resistivity of the cell layer, (2) the average distance between the basal cell surface and substratum, and (3) the capacitance of apical, basal, and lateral cell membranes. This model is used to analyze impedance changes on removal of Ca2+ from confluent Mardin-Darby canine kidney cell layers. The method shows that reduction of Ca2+ concentration causes junction resistance between cells to drop and the distance between the basal cell surface and substratum to increase.

Full text

PDF
2800

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cereijido M., González-Mariscal L., Borboa L. Occluding junctions and paracellular pathways studied in monolayers of MDCK cells. J Exp Biol. 1983 Sep;106:205–215. doi: 10.1242/jeb.106.1.205. [DOI] [PubMed] [Google Scholar]
  2. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. doi: 10.1007/BF01870332. [DOI] [PubMed] [Google Scholar]
  4. Clausen C. Impedance analysis in tight epithelia. Methods Enzymol. 1989;171:628–642. doi: 10.1016/s0076-6879(89)71035-1. [DOI] [PubMed] [Google Scholar]
  5. Clausen C., Lewis S. A., Diamond J. M. Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J. 1979 May;26(2):291–317. doi: 10.1016/S0006-3495(79)85250-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conyers G., Milks L., Conklyn M., Showell H., Cramer E. A factor in serum lowers resistance and opens tight junctions of MDCK cells. Am J Physiol. 1990 Oct;259(4 Pt 1):C577–C585. doi: 10.1152/ajpcell.1990.259.4.C577. [DOI] [PubMed] [Google Scholar]
  7. Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
  8. Frömter E. The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol. 1972;8(3):259–301. doi: 10.1007/BF01868106. [DOI] [PubMed] [Google Scholar]
  9. Fuller S., von Bonsdorff C. H., Simons K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell. 1984 Aug;38(1):65–77. doi: 10.1016/0092-8674(84)90527-0. [DOI] [PubMed] [Google Scholar]
  10. Giaever I., Keese C. R. Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7896–7900. doi: 10.1073/pnas.88.17.7896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giaever I., Keese C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3761–3764. doi: 10.1073/pnas.81.12.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giaever I., Keese C. R. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng. 1986 Feb;33(2):242–247. doi: 10.1109/TBME.1986.325896. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez-Mariscal L., Contreras R. G., Bolívar J. J., Ponce A., Chávez De Ramirez B., Cereijido M. Role of calcium in tight junction formation between epithelial cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C978–C986. doi: 10.1152/ajpcell.1990.259.6.C978. [DOI] [PubMed] [Google Scholar]
  14. Gordon L. G., Kottra G., Frömter E. Electrical impedance analysis of leaky epithelia: theory, techniques, and leak artifact problems. Methods Enzymol. 1989;171:642–663. doi: 10.1016/s0076-6879(89)71036-3. [DOI] [PubMed] [Google Scholar]
  15. Gumbiner B., Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol. 1986 Feb;102(2):457–468. doi: 10.1083/jcb.102.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987 Dec;253(6 Pt 1):C749–C758. doi: 10.1152/ajpcell.1987.253.6.C749. [DOI] [PubMed] [Google Scholar]
  17. Handler J. S. Use of cultured epithelia to study transport and its regulation. J Exp Biol. 1983 Sep;106:55–69. doi: 10.1242/jeb.106.1.55. [DOI] [PubMed] [Google Scholar]
  18. Lewis S. A., Diamond J. M. Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol. 1976 Aug 27;28(1):1–40. doi: 10.1007/BF01869689. [DOI] [PubMed] [Google Scholar]
  19. Lo C. M., Keese C. R., Giaever I. Monitoring motion of confluent cells in tissue culture. Exp Cell Res. 1993 Jan;204(1):102–109. doi: 10.1006/excr.1993.1014. [DOI] [PubMed] [Google Scholar]
  20. Madara J. L., Pappenheimer J. R. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol. 1987;100(2):149–164. doi: 10.1007/BF02209147. [DOI] [PubMed] [Google Scholar]
  21. Madara J. L. Tight junction dynamics: is paracellular transport regulated? Cell. 1988 May 20;53(4):497–498. doi: 10.1016/0092-8674(88)90562-4. [DOI] [PubMed] [Google Scholar]
  22. Pappenheimer J. R. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol. 1987;100(2):137–148. doi: 10.1007/BF02209146. [DOI] [PubMed] [Google Scholar]
  23. Powell D. W. Barrier function of epithelia. Am J Physiol. 1981 Oct;241(4):G275–G288. doi: 10.1152/ajpgi.1981.241.4.G275. [DOI] [PubMed] [Google Scholar]
  24. Richardson J. C., Scalera V., Simmons N. L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta. 1981 Feb 18;673(1):26–36. [PubMed] [Google Scholar]
  25. Schwan H. P. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng. 1992;20(3):269–288. doi: 10.1007/BF02368531. [DOI] [PubMed] [Google Scholar]
  26. Simmons N. L. Ion transport in 'tight' epithelial monolayers of MDCK cells. J Membr Biol. 1981 Apr 15;59(2):105–114. doi: 10.1007/BF01875708. [DOI] [PubMed] [Google Scholar]
  27. Stevenson B. R., Anderson J. M., Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem. 1988 Oct;83(2):129–145. doi: 10.1007/BF00226141. [DOI] [PubMed] [Google Scholar]
  28. Stevenson B. R., Anderson J. M., Goodenough D. A., Mooseker M. S. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol. 1988 Dec;107(6 Pt 1):2401–2408. doi: 10.1083/jcb.107.6.2401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wills N. K., Clausen C. Transport-dependent alterations of membrane properties of mammalian colon measured using impedance analysis. J Membr Biol. 1987;95(1):21–35. doi: 10.1007/BF01869627. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES