Skip to main content
BMC Public Health logoLink to BMC Public Health
. 2025 Aug 19;25:2852. doi: 10.1186/s12889-025-23958-9

A systematic review and meta-analysis on the global prevalence of helminthic parasites among schoolchildren: a public health concern

Milad Badri 1,✉,#, Meysam Olfatifar 2,#, Zahra Gharibi 3,#, Mahendra Pal 4,#, Kareem Hatam-Nahavandi 5,#, Ali Asghari 6, Giovanni Sgroi 7,8, Hanieh Soltani 9, Amir Abdoli 10,11,, Aida Vafae Eslahi 1,
PMCID: PMC12366209  PMID: 40830461

Abstract

Background

Neglected tropical diseases (NTDs) are responsible for substantial illness and death worldwide. Helminthic infections among school-aged children pose a serious public health challenge due to their detrimental effects on health and development.

Methods

A wide-ranging search conducted across five databases, including Scopus, EMBASE, PubMed, Web of Science, and Google Scholar to retrieve papers published between 1998 and 2024. To evaluate the combined prevalence, a random-effects model with a 95% confidence interval (CI) was applied, and the statistical analysis was performed using meta-analysis packages in R version (3.6.1).

Results

There were 190 eligible studies documented in 42 countries, and 199,988 schoolchildren included in this review. The global prevalence of helminthic parasites was 20.6% (17.2– 24.3%). Among the countries studied, Tanzania and Vietnam showed the highest levels of prevalence at 67.41% and 65.04%, respectively, with Toxocara spp. and Ascaris lumbricoides being the most prevalent helminthic parasites at 10.36% and 9.47%, respectively.

Conclusion

In conclusion, this study underscores the pressing public health concern of helminthic infections among schoolchildren, largely driven by inadequate sanitation and poor water quality. Prompt action, such as improving sanitation, expanding school-based deworming programs, and enhancing access to safe water, is crucial to control these infections and enhance overall health outcomes.

Supplementary Information

The online version contains supplementary material available at 10.1186/s12889-025-23958-9.

Keywords: Intestinal helminths, Soil-transmitted helminths (STHs), Child health, Schoolchildren, Systematic review

Background

Neglected tropical diseases (NTDs) are primarily chronic infections that cause significant illness and death, particularly among the world’s poorest populations. These diseases not only impact health but also contribute to the cycle of poverty [1].

Socioeconomic disadvantage is a well-established and significant factor influencing the spread of these diseases. Factors such as poverty and inadequate sanitation play a key role in facilitating parasite transmission [2]. In terms of disability-adjusted life years (DALYs), the greatest burden of NTDs is still attributed to soil-transmitted helminth (STHs) infections, schistosomiasis, lymphatic filariasis, and dengue fever [3].

Intestinal helminth infections are regarded as highly significant socio-economic and public health concerns globally [4]. Their prevalence is higher in tropical and subtropical zones, notably among populations in developing countries facing poverty and poor sanitary conditions [5]. It is approximated that nearly 300 million people suffer from heavy morbidity of intestinal helminths with annual deaths ranging from 10,000 to 135,000 [5, 6]. According to the World Health Organization (WHO) statistics, many people worldwide are infected with these infections. Globally, nearly 2 billion people primarily children are infected with common parasitic diseases such as STHs, which include hookworms (Necator americanus, Ancylostoma duodenale), Ascaris lumbricoides, and Trichuris trichiura [7].

Preschoolers and school-aged children, including adolescents, are disproportionately affected by intestinal helminths and schistosomes for reasons that are not yet well understood. These infections can result in stunted growth, weakened physical health, and impaired cognitive function particularly memory and learning which together negatively impact their educational achievement and school participation [8].

Transmission of intestinal parasites commonly occurs via exposure to contaminated feces, ingestion of raw or undercooked meat, contaminated water or soil, or through transdermal penetration [9]. In children, infection commonly occurs through soil-transmitted routes and behaviors such as nail biting. In high-prevalence regions, approximately 870 million children are estimated to be at risk of soil‑transmitted helminth infections globally, according to WHO [10]. A prevalence rate of high intestinal parasite has been reported in children compared to people of other ages. Intestinal helminths infection in children can lead to severe complications such as malabsorption, malnutrition, disorders of growth and development, anemia and retardation, intestinal obstruction, hemorrhagic diarrhea, fever, dehydration, vomiting and nutritional complications such as iron deficiency anemia. Up to date, numerous studies have been conducted on intestinal parasites prevalence in school-aged children in different countries [11].

According to the geographical and health status of the studied area, statistics have been designed in a wide range, indicating helminth infection as a leading cause of health problem in the world. However, differences in the rate of prevalence of helminth parasites may be related to diverse factors such as climate, geography, socio-economic, and cultural factors [12, 13].

Helminth infections in fecal samples are primarily diagnosed using direct smear microscopy, concentration methods, and the Kato-Katz technique for quantifying helminth eggs, including Schistosoma species [1416]. Today, more accurate DNA-based methods are used to more accurately diagnose infections of this type [10, 14]. Preschool and schoolchildren are particularly vulnerable to helminth infections and associated complications like malnutrition and anemia. Due to their higher exposure to contaminated sources such as soil, growing evidence over recent years highlights the importance of prioritizing infection risk in this population. These findings are critical in creating proper and effective interventions [1719].

This systematic review and meta-analysis focused on estimating the global prevalence of helminthic parasite in school-age children via synthesizing data across studies in distinct geographic locations. The findings of this review are expected to support evidence-based interventions aimed at reducing the burden of soil-transmitted helminthic infections among school-aged children.

Methods

Search approach

This study adhered to the guidelines established by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) (Fig. 1) [20]. We systematically searched several databases, including Scopus, EMBASE, PubMed, Web of Science, and Google Scholar, to collect relevant papers published between 1998 and 2024, applying no date restrictions (Supplementary Table 1).

Fig. 1.

Fig. 1

Flow diagram of the study design process

We used search terms associated with the prevalence, epidemiology, incidence, parasites, parasitic diseases, parasitic infections, helminthiasis, parasitic helminth, helminth parasites, helminthic infections, helminth diseases, pathogenic helminth, intestinal helminth, preschool and/or school-age children, global, and worldwide, using both AND and/or Boolean operators.

Duplicates were removed using EndNote X9 software library and manual verification, followed by manual screening of reference lists to capture relevant studies potentially missed by the database search. After automatic and manual duplicate removal (21,350 duplicates), 2,906 unique records were screened.

Two reviewers (ZG and HS) independently screened titles and abstracts and assessed full-text articles for eligibility. Disagreements were resolved through discussion with a third reviewer (MB). Data extraction and quality assessment were also independently conducted by ZG and HS, with supervision by AVE and MB.

Inclusion and exclusion criteria

Articles were included if they were cross-sectional studies documenting helminthic infections in schoolchildren, published as original research in peer-reviewed journals, available in English with both abstracts and full texts accessible, and reporting the total sample size and the number of positive cases.

Studies classified as case series, case reports, letters, editorials, publications lacking original data, review articles, those with inconclusive findings, non-English publications, and studies reporting parasitic helminths from non-human samples were excluded from this analysis.

Microsoft Excel® version 2016 was employed to systematically extract the following data from the included articles: author names, publication year, climate, annual rainfall, average temperature, humidity, gender, age, mean age, educational level, Global Burden of Disease (GBD) regions, WHO region, countries, district/city/province, Human Development Index (HDI), income level, type of samples, diagnostic method, and type of helminth parasites (Tables 12 and 3).

Table 1.

Main characteristics of the included studies reporting the prevalence of helminth parasites among schoolchildren

Study No Author Study Year Country District/City/Province Diagnostic method Sample size Infected Age of selected population Mean age Species of helminths
2 Khan W et al 2020 Pakistan Dir Direct smear & Concentration (Sedimentation) 324 266 4_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis
3 Chien Wei Liao et al 2016 West Africa Democratic Republic of Sao Tome Concentration (Sedimentation) 252 108 8_9 9.8 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
4 Okyay et al 2004 Turkey Direct smear 456 83 7_14 –– Enterobius vermicularis
5 Habtu Debash et al 2023 Ethiopia Sekota Direct smear & Concentration (Sedimentation) & staining 402 38 6_14 –– Hymenolepis nana
6 Hussein Sharif Siddig et al 2017 Sudan Khartoum Direct smear & Concentration (Sedimentation) 120 20 5_7 –– Ascaris lombricidas, Hymenolepis nana, Schistosoma spp., Enterobius vermicularis
7 Ashok et al 2013 India Direct smear & Concentration (Sedimentation) 208 14 6_14 8.8 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm, Enterobius vermicularis
8 Ranjit Gupta et al 2020 Nepal Saptari Concentration (Sedimentation) 285 8 11_15 –– Ascaris lumbricoides, Hymenolepis nana
9 Tamiru Getnet et al 2020 Ethiopia Amber Direct smear 384 55 9_12 –– Ascaris lombricidas, Hymenolepis nana, Hookworm, Enterobius vermicularis
10 Khadime sylla et al 2020 Senegal Dakar Direct smear & Concentration (Sedimentation) & staining 1603 18 5_10 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp.
11 Chien Wei Liao et al 2017 The Republic Of Marshall Island Democratic Republic of Sao Tome Concentration (Sedimentation) 400 22 6_13 9.73 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
12 Napharanh Nanthavong et al 2017 Democratic Republic Huaphan Direct smear & Concentration (Sedimentation) 74 18 up to 5 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
13 Wafaa FA.Ahmad et al 2011 Egypt Tanta Direct smear & Concentration (Sedimentation) 1520 112 6_12 –– Ascaris lumbricoides, Schistosoma spp., Enterobius vermicularis
14 Talal Alharazi et al 2020 Yemen Taiz Direct smear & Concentration (Sedimentation) 385 36 7_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Hookworm, Enterobius vermicularis
15 Taheri et al 2011 Iran South Khorasan Direct smear & Concentration (Sedimentation) 2169 171 6_11 –– Ascaris lombricidas, Hymenolepis nana, Enterobius vermicularis
16 Ikram Ullah et al 2009 Pakistan Peshawar Direct smear 200 140 5_10 –– Ascaris lombricidas, Hymenolepis nana, Taenia spp., Enterobius vermicularis
17 Abdelsafi Gabbad and Mohammed A Elawad 2014 Sudan Khartoum Direct smear & Concentration (Flotation & Sedimentation) 500 228 5_10 –– Hymenolepis nana, Taenia spp., Schistosoma spp., Enterobius vermicularis
18 Berhanu Feleke 2016 Ethiopia Bahir Dar Direct smear 2372 1463 5_19 12.75 Ascaris lumbricoides
19 Dires Tegen et al 2020 Ethiopia Dera Direct smear & Concentration (Sedimentation) 382 211 6_21 ––

Ascaris lumbricoides,

Hymenolepis nana, Trichuris trichiura, Taenia spp., Schistosoma spp., Hookworm, Enterobius vermicularis

20 Baba Krishna Sharma et al 2004 Nepal Kathmandu Concentration (Sedimentation) 533 485 4_19 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
21 Olawumi Edward et al 2017 Malaysia Tapah Direct smear & Concentration (Sedimentation) & kato-katz method 508 308 6_13 10.1 Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Hookworm
22 Afridi et al 2017 Pakistan Skardu Direct smear 300 95 up to 5 –– Ascaris lumbricoides, Hymenolepis nana
23 Ika Puspa Sari et al 2016 Indonesia Jakarta Direct smear 157 2 6_11 –– Trichuris trichiura, Hookworm
24 Eman H.Radwan et al 2019 Egypt Damanhur Direct smear & Concentration (Sedimentation) 810 47 6_18 11.2 Ascaris lombricidas, Hymenolepis nana, Schistosoma spp., Enterobius vermicularis
25 Msab Nou Raldein et al 2019 Sudan Berber Direct smear & Concentration (Sedimentation) 100 87 6_11 –– Ascaris lombricidas, Hymenolepis nana, Hookworm
26 LK Khanal et al 2011 Nepal Kathmandu Concentration (Sedimentation) 142 19 6_16 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
27 Zeynep Gokalp 2015 Turkey Eskisehir Concentration (Sedimentation) 132 10 7_12 7.96 Enterobius vermicularis
28 Daniel Gebretasdik et al 2018 Ethiopia Harbu Direct smear & Concentration (Sedimentation) 400 38 5_15 –– Hymenolepis nana
29 Ismail et al 2018 Egypt Taifg Direct smear & Concentration (Sedimentation) 150 18 4_14 –– Ascaris lumbricoides
30 Hayatham Mahmoud Ahmad and Gamal Ali Abu-Sheishaa 2022 Egypt Aga Direct smear & Concentration (Sedimentation) 726 154 6_18 –– Ascaris lombricidas, Hymenolepis nana, Schistosoma spp., Hookworm, Enterobius vermicularis
31 Ayalew Sisay and Brook Lemma 2016 Ethiopia Bochesa Direct smear & Concentration (Sedimentation) 384 84 7_14 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Strongyloides stercoralis
32 Abuobieda Sirelkhatem et al 2019 Sudan Ombda Direct smear & Concentration (Flotation) 210 29 6_14 –– Ascaris lombricidas, Hymenolepis nana, Taenia spp.
33 R Canete et al 2013 Cuba Matanzas Direct smear & Concentration (Sedimentation) & staining 107 46 8_9 –– Ascaris lumbricoides, Trichuris trichiura
34 Niyizuragero Emile et al 2013 South Africa Rwanda Direct smear 109 23 6_12 –– Ascaris lumbricoides, Hookworm
35 R Devera et al 1998 Venezuela Direct smear & Scotch Tape Test 282 53 –– –– Enterobius vermicularis
36 Z Astal 2004 Palestine Khan Younis Direct smear & Concentration (Flotation & Sedimentation) 1370 209 6_11 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura
37 Vicente Y.Belizurio et al 2011 Philippines Davao del Norte Direct smear & Concentration (Sedimentation) 572 248 6_12 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
38 Latha Ragunathan et al 2010 India Puducherry Direct smear & staining 1172 660 5_10 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis
39 Kuang Yao Chen et al 2018 Taiwan Direct smear & Scotch Tape Test 44,163 93 4_6 –– Enterobius vermicularis
40 Abraham Degarege et al 2013 Ethiopia Wonji Shoa Sugar Direct smear & Concentration (Sedimentation) & kato-katz method 403 312 4_6 3.3 Ascaris. Lumbricoides, Trichuris trichiura, Schistosoma spp., Hookworm
41 Alexandwe Rosewell et al 2010 Nicaragua kato-katz method 880 238 6_14 –– Ascaris lumbricoides, Trichuris trichiura,
42 Abolfazl Iranikhah et al 2017 Iran Qom Direct smear & Concentration (Sedimentation) 2410 119 7_14 –– Hymenolepis nana, Enterobius vermicularis
43 Moradali Fouladvand et al 2018 Iran Bushehr Direct smear & Scotch Tape Test 203 23 7_12 –– Enterobius vermicularis
44 Warunee Ngrenngarmlert et al 2007 Thailand Nakhon Prathom Concentration (Sedimentation) 1920 14 7_12 –– Trichuris trichiura, Taenia spp., Hookworm, Strongyloides stercoralis, Opisthorchis spp.
45 Huong Thi Le et al 2007 Vietnam Tam Nong Direct smear 400 368 5_8 –– Ascaris lumbricoides, Trichuris trichiura
46 Mustafa Ulukanligil and Adnan Seyrek 2003 Turkey Sanliurfa Direct smear & Scotch Tape Test 1820 1759 7_14 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp.
47 Sarmila Tandukar et al 2013 Nepal Lalitpur Direct smear & Concentration (Sedimentation) & staining 1392 40 5_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
48 Rostami Masoumeh et al 2012 Iran Golestan Direct smear & Concentration (Sedimentation) 800 31 8_12 –– Ascaris lombricidas, Hymenolepis nana, Hookworm, Enterobius vermicularis
49 Ayodhia Pitaloka Pasaribu et al 2019 Indonesia Suka Direct smear & Concentration (Sedimentation) & kato-katz method 468 360 6_12 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
50 Jitendra Shrestha et al 2019 Nepal Kathmandu Concentration (Sedimentation) 508 141 4_19 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura
51 Jannatbi Iti 2018 India Bijapur Direct smear 58 6 8_13 –– Ascaris lumbricoides, Hymenolepis nana
52 Hassan Rezanezhad et al 2017 Iran Jahrom Direct smear & Concentration (Sedimentation) 431 1 ––- –– Enterobius vermicularis
53 Kamal Singh Khadka et al 2013 Nepal Pokhara Concentration (Sedimentation) 100 6 3_15 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
54 Elahe Atashnafas et al 2006 Iran Damghan Direct smear & Concentration (Sedimentation) 764 70 7_12 –– Enterobius vermicularis
55 Z.Astal et al 2004 Palestine Khan Younis Direct smear & Concentration (Sedimentation) & staining 1370 496 6_11 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Enterobius vermicularis
56 A.Dudlova et al 2018 Slovakia Direct smear & Scotch Tape Test 390 14 2_15 –– Enterobius vermicularis
57 Tsegaw Fentie et al 2013 Ethiopia Tana Direct smear & Concentration (Sedimentation) & kato-katz method 520 458 6_15 11.6 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Fasciola spp., Schistosoma spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
58 D L Lee et al 1999 Malaysia Sarawak Concentration (Sedimentation) 264 117 7_16 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
59 David M.Cook et al 2009 Guatemala Palajunoj Direct smear 5228 1207 5_15 –– Ascaris lumbricoides, Hymenolepis nana
60 Laukaji Rai et al 2017 Nepal Lokhim Direct smear 359 31 4_16 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Enterobius vermicularis
61 Manisha Shurma et al 2020 Nepal Bhaktapur Direct smear 194 4 6_14 –– Hymenolepis nana
62 Bijay Kumar Shrestha et al 2021 Nepal Dharan Submetropolitan Direct smear & Concentration (Sedimentation) 400 43 6_11 –– Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis
63 Melaku Wale and Solomon Gedefaw 2022 Ethiopia Jaragedo Concentration (Sedimentation) 396 72 7_16 –– Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis
64 Olufemi MOSES Agbolade et al 2007 Nigeria Ogun State Direct smear & Concentration (Sedimentation) 1059 1006 3_18 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Schistosoma spp., Enterobius vermicularis, Strongyloides stercoralis
65 Hossein Mahmoudvand et al 2020 Iran Lorestan Direct smear & Concentration (Sedimentation) 366 36 2_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Enterobius vermicularis
66 Nan Linh Njuyen et al 2012 Ethiopia Angolela Concentration (Sedimentation) 664 75 6_19 –– Ascaris lombricidas, Hymenolepis nana, Enterobius vermicularis
67 Rosa Elena Mejia Torres et al 2014 Honduras Tegucigalpa kato-katz method 2554 1493 8_11 ––

Ascaris Lumbricoides,

Hymenolepis nana,

Trichuris trichiura

, Enterobius vermicularis,

Strongyloides stercoralis

68 David Jose Gonzalez et al 2019 colombia Antioquia Direct smear & Concentration (Sedimentation) & kato-katz method 6045 2182 7_10 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
69 Collins Okoyo et al 2020 Kenya Kenya Direct smear & Concentration (Sedimentation) & kato-katz method 9801 1646 5_14 –– Ascaris lumbricoides, Trichuris trichiura, Schistosoma spp., Hookworm
70 Rajabu Hussein et al 2020 Tanzania Nyamikoma kato-katz method 830 752 –– –– Schistosoma spp.
71 Teshome Bekana et al 2021 Ethiopia Amhara Direct smear & Concentration (Sedimentation) & kato-katz method 798 248 6_15 –– Fasciola spp., Schistosoma spp.
72 A Escobedol Andel et al 2008 Cuba Pinar del Río Direct smear & Concentration (Sedimentation) & kato-katz method 200 163 5_15 –– Ascaris Lumbricoides, Trichuris trichiura, Hookworm
73 Nahya Salim et al 2014 Tanzania rural coastal Tanzania Duplicate Urine filtration & Dipstick & Baerman method & Concentration (Flotation & Sedimentation) 1033 396 –– –– Ascaris Lumbricoides, Trichuris trichiura, Schistosoma spp., Hookworm Enterobius vermicularis, Strongyloides stercoralis, Wuchereria bancrofti,
74 Daniel Getacher Feleke et al 2022 Ethiopia Ambara Direct smear & Concentration (Sedimentation) 375 95 6_11 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Schistosoma spp., Hookworm, Enterobius.vermicularis, Strongyloides stercoralis
75 Fikru Gashaw et al 2015 Ethiopia Maksegnit and Enfranz Direct smear & Concentration (Sedimentation) & kato-katz method 550 352 5_17 –– Ascaris Lumbricoides, Schistosoma spp.
76 Angus Hughes et al 2023 Vietnam Dak Lak Multiplex PCR 7710 2328 –– –– Ascaris Lumbricoides, Trichuris trichiura, Hookworm, Strongyloides stercoralis
77 Privat Agniwo et al 2023 Mali Fangouné Bamanan and Diakalèl Duplicate Urine filtration & Dipstick & Baerman method & Concentration (Flotation & Sedimentation) 971 487 6_14 –– Schistosoma spp.
78 Sangeeta Deka et al 2021 India North-eastern India Direct smear & Concentration (Sedimentation) & kato-katz method 435 50 –– –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
79 A.Daryani et al 2012 Iran Sari Direct smear & Concentration (Sedimentation) & staining 1100 56 7_14 –– Enterobius.vermicularis, Strongyloides stercoralis, Trichostrongylus spp.
80 Orabi 2000 Palestine Nablus Direct smear & Concentration (Sedimentation) 220 8 1_6 –– Hymenolepis nana, Enterobius vermicularis
81 LEE et al 2000 Philippines Roxas Concentration (Sedimentation) 301 262 1_16 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Opisthorchis spp., Echinostoma spp., Rhabditis spp.
82 LEE et al 2000 Philippines Legaspi Concentration (Sedimentation) 64 30 3_20 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Opisthorchis spp., Echinostoma spp., Rhabditis spp.
83 Salahi et al 2019 Iran Khodabandeh Direct smear & Concentration (Sedimentation) 520 17 3_7 –– Taenia spp., Enterobius vermicularis
84 Yong et al 2000 Nepal Baharatpur Direct smear & Concentration (Sedimentation) 300 62 –– –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Fasciola spp., Hookworm
85 Shahabi et al 2000 Iran Shahriar Direct smear & Concentration (Sedimentation) 1902 294 6_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Fasciola spp., Hookworm, Enterobius vermicularis, Trichostrongylus spp., Dicrocoelium dendriticum
86 Chandrasena et al 2004 Sri Lanka Mahiyangana Direct smear 145 28 6_15 –– Hookworm, Enterobius vermicularis
87 Saifi et al 2001 India Budaun Direct smear & Concentration (Flotation) 367 49 5_13 ––

Ascaris lumbricoides,

Hymenolepis nana

88 Waikagul et al 2002 Thailand Nan Concentration (Sedimentation) 1010 606 –– –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Enterobius vermicularis, Strongyloides stercoralis, Opisthorchis spp.
89 LEE et al 2002 Cambodia Kampongcham Concentration (Sedimentation) 251 138 –– –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Opisthorchis spp., Echinostoma spp., Rhabditis spp.
90 Sanprasert et al 2016 Thailand –– Concentration (Sedimentation) 1909 131 1_23 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Fasciola spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
91 Piangiai et al 2003 Thailand Chiang Mal Concentration (Sedimentation) 403 120 –– –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Opisthorchis spp.
92 Rita Khanal et al 2018 Nepal Rupandehi Direct smear & Concentration (Flotation & Sedimentation) 217 114 4_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp.
93 Bakarman et al 2019 Saudi Arabia Jeddah Concentration (Sedimentation) 581 1 6_16 11.6 Hymenolepis nana
94 Nematian et al 2004 Iran Tehran Direct smear & Concentration (Sedimentation) 19,209 826 –– 8.5 Ascaris lumbricoides, Hymenolepis nana, Taenia spp., Enterobius vermicularis
95 Jintana Yanola et al 2018 Thailand Omkoi Concentration (Sedimentation) 375 33 6_14 –– Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis
96 Saksirisampant et al 2004 Thailand Chiang Mai Concentration (Sedimentation) 781 146 6_19 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Enterobius vermicularis, Strongyloides stercoralis
97 Daryani et al 2005 Iran Ardabil Direct smear & Concentration (Sedimentation) 1070 16 7_13 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Enterobius vermicularis
98 Chandrashekhar et al 2005 Nepal Kaski Direct smear 2091 117 6_10 8.8 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm, Enterobius vermicularis, Strongyloides stercoralis
99 Sadjjadi and N Tanideh 2005 Iran Marvdasht Direct smear & Concentration (Sedimentation) 337 6 3_6 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Enterobius vermicularis
100 Shoji Uga et al 2005 Vietnam Hanoi Direct smear & Concentration (Sedimentation) 217 144 14_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Fasciola spp., Hookworm, Enterobius vermicularis
101 Wongiindanon et al 2005 Thailand Samut Sakhon Direct smear 4014 152 5_7 –– Taenia spp., Hookworm, Strongyloides stercoralis, Opisthorchis spp.
102 Chhakda et al 2005 Cambodia –– Direct smear & Concentration (Sedimentation) & kato-katz method 1616 546 –– 11.3 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
103 Kanoa et al 2006 Palestine Gaza Direct smear & staining 432 53 6_11 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
104 K. Patel and R. Khandekar 2006 Oman Dahahira Direct smear 436 41 9_10 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Enterobius vermicularis, Strongyloides stercoralis
105 Saksirisampant et al 2006 Thailand –– Concentration (Sedimentation) 1037 7 3_12 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm, Enterobius vermicularis, Strongyloides stercoralis
106 Yaicharoen et al 2006 Thailand Nakhon Pathom Direct smear 814 29 7_13 –– Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Strongyloides stercoralis, Opisthorchis spp.
107 Aksoy et al 2007 Turkey Izmir Direct smear & Concentration (Sedimentation) & staining 1127 128 7_14 –– Hymenolepis nana, Enterobius vermicularis
108 Aminzadeh et al 2007 Iran Varamin Direct smear & Concentration (Sedimentation) & staining 293 16 –– –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Enterobius vermicularis, Strongyloides stercoralis
109 Almerie et al 2008 Syria Damascus Direct smear 1469 5 6_12 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
110 Gyawali et al 2009 Nepal Dharan Direct smear & Concentration (Sedimentation) 182 10 4_10 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
111 Nagwa Aly and Magda M.M. Mostafa 2010 Saudi Arabia Tabuk Direct smear & Concentration (Sedimentation) & staining 812 10 2_12 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
112 Sehgal et al 2010 India Chandigarh Direct smear 360 22 –– –– Hymenolepis nana
113 Shwkat Ahmad Wani et al 2010 India Kashmir Direct smear & Concentration (Sedimentation) & kato-katz method 352 265 1_15 9.1 Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Enterobius vermicularis
114 Singh et al 2010 India Srinagar Direct smear 514 191 5_14 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp.
115 Samal et al 2016 India Khurda Direct smear & Concentration (Sedimentation) & staining 250 20 1_15 –– Ascaris lumbricoides, Hymenolepis nana, Hookworm
116 Rayan et al 2010 India –– Direct smear 195 61 5_11 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
117 Matthys et al 2011 Tajikistan –– Concentration (Sedimentation) 594 208 7_11 9.1 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
118 S. Hussein 2011 Palestine Nablus Direct smear & Concentration (Sedimentation) & staining & PCR 735 40 7_13 9.5 Ascaris lumbricoides, Enterobius vermicularis
119 Bhandari et al 2011 Nepal Kavrepalanchowk Direct smear & Concentration (Sedimentation) 360 81 –– –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Strongyloides stercoralis
120 D.Chandi and J.Lakhani 2018 India Bhaili Direct smear & Concentration (Sedimentation) 250 27 6_15 –– Ascaris lumbricoides, Taenia spp., Hookworm
121 A Aher and S Kulkarni 2011 India Ahmednagar Direct smear 624 54 6_12 –– Ascaris lumbricoides, Hymenolepis nana, Taenia spp., Hookworm, Strongyloides stercoralis
122 Nithyamathi et al 2016 Malaysia Peninsular Direct smear & Concentration (Sedimentation) 1760 108 7_12 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Hookworm
123 Abdulsalam et al 2012 Malaysia Pahang Direct smear 300 208 6_13 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
124 Bhattachan et al 2015 Nepal Chitwan Concentration (Sedimentation) 296 23 5_18 –– Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm
125 Panda et al 2012 India Nellimarla Mandal Direct smear 124 17 6_9 –– Hymenolepis nana, Hookworm, Strongyloides stercoralis
126 Shrestha et al 2012 Nepal Baglung Direct smear & Concentration (Sedimentation) 260 26  ≤ 4 −10 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm
127 Al-Delaimy et al 2014 Malaysia Lipis Direct smear & Concentration (Sedimentation) & staining 498 261 6_12 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
128 Al-Mekhlafi et al 2019 Malaysia Peninsular Direct smear & Concentration (Sedimentation) & staining & PCR 1142 180 6_19 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Enterobius vermicularis, Strongyloides stercoralis
129 Bilakshan sah et al 2013 Nepal Itahari Direct smear 200 26 12_15 ––- Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Hookworm
130 J.lakhani et al 2013 India Vadodara Direct smear & Concentration (Sedimentation) 140 16 6_12 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm
131 Kitvatanachai et al 2013 India Muang Pathum Thani Direct smear & Concentration (Sedimentation) 202 1 7_12 –– Hookworm
132 Raj Tiwari et al 2013 Nepal Dadeldhura Direct smear 530 161 4_12 –- Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
133 Ullah et al 2014 Pakistan Khyber Pakhtunkhwa Direct smear & staining 222 222 4_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis, Toxocara spp.
134 Pradhan et al 2014 Nepal Kathmandu Direct smear 194 9 6_10 –– Hymenolepis nana, Trichuris trichiura, Hookworm
135 Hajare et al 2022 Ethiopia Ofa Direct smear 391 357 5_15 –– Ascaris lumbricoides, Trichuris trichiura, Schistosoma spp., Strongyloides stercoralis
136 Muharram 2023 Yemen Sana'a Direct smear & Concentration (Sedimentation) 500 9 6_16 –– Ascaris lumbricoides, Hymenolepis nana, Taenia spp.
137 Jada et al 2016 Malaysia Kancheepuram Direct smear & Concentration (Flotation) 335 133 6_12 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
138 Oladejo So et al 2018 Nigeria Imo Direct smear & Concentration (Sedimentation) 132 26 1_45 ––

Ascaris Lumbricoides,

Fasciola spp.,

Schistosoma spp.,

Hookworm

139 Kiran et al 2014 India Bhopal Direct smear 300 45 6_12 –– Ascaris lumbricoides, Hookworm
140 Jaiswal et al 2014 Nepal Kaski Direct smear 163 6 3_15 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
141 Pandey et al 2015 Nepal Kathmandu Direct smear & Concentration (Sedimentation) 300 6 7_15 –– Ascaris lumbricoides, Hymenolepis nana
142 R Polseela and A Vitta 2015 Thailand Phitsanulok Direct smear & Concentration (Sedimentation) 352 12 7_15 –– Hookworm, Enterobius vermicularis, Strongyloides stercoralis
143 Altinoz Aytar et al 2015 Turkey Yıgılca Direct smear & staining 523 89 6_19 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
144 Punsawad et al 2018 Thailand Nopphitam Direct smear & Concentration (Sedimentation) & kato-katz method 299 34 7_12 ––- Trichuris trichiura, Hookworm, Enterobius vermicularis
145 Aschalew Gelaw et al 2013 Ethiopia Gondar Direct smear & Concentration (Sedimentation) 304 82 9_13 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Hookworm, Strongyloides stercoralis
146 Bhandari et al 2015 Nepal Kathmandu Direct smear & Concentration (Sedimentation) & staining 507 18 3_14 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Strongyloides stercoralis
147 K Yadav and S Prakash 2016 Nepal Kathmandu Direct smear & staining 507 129 6_10 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura
148 Dahal et al 2022 Nepal Kathmandu Direct smear 409 39 5_18 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
149 Bansal et al 2018 India Rishikesh Direct smear & Concentration (Flotation) & staining 461 26  < 10 7.26 Ascaris lumbricoides, Hymenolepis nana, Hookworm, Enterobius vermicularis
150 Limbu et al 2021 Nepal Dharan Direct smear & Concentration (Sedimentation) 116 4 –– –– Ascaris lumbricoides, Hymenolepis nana, Hookworm
151 Shrestha et al 2016 Nepal Bhaktapur Direct smear & Concentration (Sedimentation) 184 34 3_14 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm
152 Dhital et al 2016 Nepal Kathmandu Direct smear & Concentration (Sedimentation) & staining 600 11 3_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp.
153 Doi et al 2016 Thailand Sakon Nakhon Concentration (Sedimentation) 417 121 4_12 ––- Trichuris trichiura, Taenia spp., Hookworm, Opisthorchis spp., Heterophyes Heterophyes, Gongylonema spp.,
154 Ankan et al 2016 Turkey Kutahya Direct smear & Concentration (Sedimentation) & staining 471 57 5_11 7.91 Enterobius vermicularis
155 Safi et al 2019 Afghanistan –– kato-katz method 2263 602 8_10 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
156 Korzeniewski 2016 Afghanistan –– Direct smear & Concentration (Sedimentation) 500 189 7_18 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Fasciola spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis, Trichostrongylus spp., Dicrocoelium dendriticum
157 Al-Mekhlafi et al 2016 Yemen Sana'a Direct smear & Concentration (Sedimentation) 1218 209 5_15 9.3 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Enterobius vermicularis, Strongyloides stercoralis
158 AL-Fakih et al 2022 Yemen –– Direct smear & Concentration (Sedimentation) 600 60 7_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Schistosoma spp., Enterobius vermicularis
159 Alsubaie et al 2016 Yemen Ibb Direct smear & Concentration (Sedimentation) 258 92 8_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Hookworm, Enterobius vermicularis, Strongyloides stercoralis
160 Ghani et al 2016 Pakistan Lahore Direct smear 300 36  < 10 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Enterobius vermicularis
161 Turki et al 2017 Iran Bandar Abbas Direct smear & Concentration (Sedimentation) & staining 1456 4 6_14 9.2 Hymenolepis nana, Enterobius vermicularis
162 Bahmani et al 2017 Iran Sanandaj Direct smear & Concentration (Sedimentation) 400 15 7_15 –– Hymenolepis nana
163 Jameel et al 2017 Iraq Zakho Direct smear 103 18 6_12 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Enterobius vermicularis
164 Jaiswal et al 2017 Nepal Damauli Direct smear & Concentration (Flotation & Sedimentation) 150 27 7_13 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
165 Tenali et al 2018 India –– Direct smear & staining 1246 208 5_18 12.6 Ascaris lumbricoides, Trichuris trichiura, Hookworm, Enterobius vermicularis
166 Kyaw et al 2018 Thailand Ratchaburi Direct smear & Concentration (Sedimentation) 252 12 9_17 11.86 Ascaris lumbricoides, Hookworm
167 Tandukar et al 2018 Nepal Kathmandu Direct smear & Concentration (Sedimentation) & staining & PCR 333 9 5_15 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
168 Gopalakrishnan et al 2018 India Anakaputhur Direct smear 250 19 13_18 –– Ascaris lumbricoides, Hookworm
169 Assavapongpaiboon et al 2018 Thailand Saraburi Direct smear & Concentration (Sedimentation) 263 5 4_15 7.9 Strongyloides stercoralis, Opisthorchis spp.
170 Upama et al 2019 Nepal Kathmandu Direct smear & Concentration (Sedimentation) 330 21 –– –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Hookworm
171 Rather et al 2019 India Kashmir Concentration (Sedimentation) 130 41 5_16 –– Ascaris lumbricoides, Trichuris trichiura,.Taenia spp
172 Gurung et al 2019 Nepal Kathmandu Direct smear & Concentration (Flotation & Sedimentation) 160 42  < 10 –– Ascaris lumbricoides, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis
173 Qasem et al 2020 Yemen Ibb Direct smear & Concentration (Sedimentation) 300 27 6_16 –– Ascaris lumbricoides, Hymenolepis nana, Enterobius vermicularis
174 Sah et al 2021 Nepal Janakpurdham Direct smear & Concentration (Sedimentation) 155 14 5_17 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis
175 T Alharrazi 2022 Yemen Taiz Direct smear & Concentration (Sedimentation) 478 100 6_15 –– Ascaris lumbricoides, Trichuris trichiura, Schistosoma spp., Enterobius vermicularis
176 Edrees et al 2022 Yemen Amran Direct smear & Concentration (Sedimentation) 360 33 6_15 –– Ascaris lumbricoides, Hymenolepis nana, Taenia spp., Schistosoma spp., Enterobius vermicularis
177 Edrees et al 2022 Yemen Sana’a Direct smear 173 29 9_13 –– Ascaris lumbricoides, Hymenolepis nana, Taenia spp., Schistosoma spp., Enterobius vermicularis
178 Khan et al 2022 Pakistan Lower Dir Direct smear & Concentration (Sedimentation) 184 58 10_17 14 Ascaris lumbricoides, Hymenolepis nana, Taenia spp., Hookworm
179 Salih et al 2022 Iraq Duhok Direct smear & Concentration (Sedimentation) 1172 158 6_12 –– Enterobius vermicularis
180 Al-Mekhlafi et al 2023 Yemen Sana'a Direct smear & Concentration (Sedimentation) & staining 400 133 7_12 9.52 Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Schistosoma spp., Enterobius vermicularis, Strongyloides stercoralis
181 Karmacharya et al 2023 Nepal Bhaktapur Direct smear & Concentration (Sedimentation) 190 7 –– –– Ascaris lumbricoides, Taenia spp., Schistosoma spp., Hookworm, Enterobius vermicularis
182 Subhan et al 2023 Pakistan Bajawar Direct smear 402 243 4_12 –– Ascaris lumbricoides, Hymenolepis nana, Trichuris trichiura, Taenia spp., Hookworm, Enterobius vermicularis
183 Njenga et al 2022 Kenya Nairobi Direct smear & Concentration (Sedimentation) & staining 406 63 –– –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
184 Mekonnen et al 2024 Ethiopia Hakim Direct smear & Concentration (Sedimentation) 333 34 5_17 –– Ascaris lumbricoides, Trichuris trichiura, Hookworm
185 Erismann et al 2016 Burkina faso ––- Direct smear & Concentration (Sedimentation) & kato-katz method 385 25 8_14 –– Hymenolepis nana, Schistosoma spp., Hookworm
186 Ikponmwosa Owen Evbuomwan et al 2022 Nigeria Benin Direct smear & Concentration (Sedimentation) 249 164 –– –– Strongyloides stercoralis
187 Z Khudrui 2000 Palestine Qalqilia Direct smear & Concentration (Flotation) 1329 153 –– –– Hymenolepis nana, Taenia spp., Enterobius vermicularis
188 Padmaja et al 2014 India Amalapuram Direct smear & Concentration (Sedimentation) 200 13 –– –– Ascaris lumbricoides, Hookworm, Enterobius vermicularis
189 Richert et al 2024 Madagascar Ambatoboeny Direct smear 241 14 0_17 11.8 Hymenolepis nana, Taenia spp., Hookworm, Enterobius vermicularis, Trichuris trichiura, Ascaris lumbricoides
190 Shaddel et al 2024 Iran Tehran Direct smear & Concentration (Sedimentation) & staining 250 9 7_14 10.17 Ascaris lumbricoides, Hookworm, Hymenolepis nana

Table 2.

Sub–group analysis based on HDI, Educational level, Source of sample, Diagnostic method, Average temperature, Annual rainfall, Climate, GBD Geographies regions, WHO region, Countries, Humidity, Age, Mean age, Gender and District/City/province in included studies

Variables No studies Sample size Infected Pooled prevalence (95% CI) Heterogeneity
I2 τ2 p-value
HDI
 Very High human development 31 25,401 4929 16.94 (9.5–25.98) 99 9.76 P <.001
 High human development 44 104,595 7876 17.39 (10.86–25.07) 99 10.02 P <.001
 Medium human development 68 45,167 9477 15.69 (11.91–19.87) 99 5.14 P <.001
 Low human development 47 24,825 9409 35.35 (25.97–45.34) 99 12.58 P <.001
 Total 190
Income level
 High income level 4 2219 66 2.67 (0.00–11.52) 96 1.22 P <.001
 Upper middle income level 57 115,458 10,965 15.46 (10.22–21.55) 99 8.63 P <.001
 Lower middle income level 91 61,616 16,112 22.78 (17.41–23.63) 99 10.16 P <.001
 Low income level 38 20,695 6432 26.95 (18.74–36.03) 99 8.75 P <.001
 Total 190
Educational level
 Secondary school 7 1788 212 12.65 (7.42–19.01) 91 1.26 P <.001
 Primary school 154 175,407 29,356 21.86 (17.96–26.03) 99 9.42 P <.001
 Primary & Secondary school 29 22,793 4007 0.1675 (0.0829–0.2739) 99 12.44 P <.001
 Total 190
Type of sample
 Stool & Urine 4 12,310 3169 47.27 (18.72–76.83) 99 12.50 P <.001
 Stool 180 185,382 29,698 20.24 (16.71–24.01) 99 9.53 P <.001
 Stool & Blood 5 1325 221 13.93 (4.46–27.40) 97 3.54 P <.001
 Total 190
Diagnostic method
 Direct smear 37 24,959 5404 19.85 (12.63–28.22) 99 9.10 P <.001
 Concentration (Sedimentation) 26 13,745 2944 22.73 (13.3–33.8) 99 10.14 P <.001
 Direct smear & Concentration (Sedimentation) 64 51,350 6016 15.18 (10.76–20.18) 99 7.04 P <.001
 Direct smear & Concentration (Sedimentation) & staining 18 13,044 1424 10.35 (4.9–17.5) 99 4.97 P <.001
 Direct smear & Concentration (Flotation & Sedimentation) 5 2397 620 30.59 (17.08–46.04) 98 3.19 P <.001
 Direct smear & Concentration (Sedimentation) & kato-katz method 14 22,380 6949 47.04 (30.19–64.25) 99 10.95 P <.001
 Direct smear & Concentration (Flotation) 4 2241 364 18.56 (8.21–31.86) 97 2.39 P <.001
 Direct smear & Scotch Tape Test 5 46,858 1942 21.63 (0.00–65.87) 99 27.72 P <.001
 Direct smear & staining 6 4102 1361 40.15 (10.15–75.07) 99 20.29 P <.001
 Kato-katz method 4 6527 3085 51.90 (20.65–80.34) 99 11.48 P <.001
 Direct smear & Concentration (Flotation) & staining 1 461 26 5.64 (3.84–8.10) -—-
 Duplicate Urine filtration & Dipstick & Baerman method & Concentration (Flotation & Sedimentation) 2 2004 883 44.20 (33.02–55.68) 96 0.66 P <.001
 Multiplex PCR 1 7710 2328 30.19 (29.13–31.18) -—-
 Direct smear & Concentration (Sedimentation) & staining & PCR 3 2210 229 7.19 (1.70–15.96) 97 1.46 P <.001
 Total 190
Average temperature
 0–10 2 984 222 16.10 (0.00–55.82) 99 9.56 P <.001
 10–20 61 55,359 6493 11.38 (7.77–15.57) 99 5.83 P <.001
 > 20 127 143,645 26,860 25.94 (21.15–31.04) 99 10.39 P <.001
 Total 190
Humidity
 < 40 33 40,847 3497 12.20 (7.40–17.99) 99 5.54 P <.001
 40–75 134 89,849 22,803 21.42 (17.10–26.07) 99 10.14 P <.001
 > 75 23 69,673 6978 14.85 (8.75–22.20) 99 12.23 P <.001
 Total 190
Annual rainfall
 < 400 43 49,326 4639 11.63 (7.73–16.20) 99 4.79 P <.001
 400–1000 48 40,710 11,581 30.85 (21.77–40.73) 99 13.21 P <.001
 1001–1500 59 22,907 5043 16.63(11.79–22.11) 99 7.20 P <.001
 > 1500 41 90,421 12,511 25.89 (17.68–35.05) 99 10.48 P <.001
 Total 190
Climate
 Desert climate 48 25,097 6986 28.28 (20.04–37.33) 99 11.50 P <.001
 Hot-summer Mediterranean climate 8 7292 2917 27.81 (9.16–51.78) 99 12.66 P <.001
 Humid subtropical climates 1 390 14 3.59 (2.15–5.93) -—-
 Semi-desert climate 26 39,792 2782 7.60 (4.78–11) 98 2.25 P <.001
 Tropical monsoon climate 45 76,352 9916 20.82 (13.38–29.39) 99 11.31 P <.001
 Tropical rainforest climate 18 15,817 5219 35.44 (22.47–49.61) 99 9.54 P <.001
 Tropical savanna climate 20 25,613 3880 16.57 (8.43–26.74) 99 7.92 P <.001
 Tropical wet-dry climate 24 9635 1861 15.39 (9.56–22.29) 99 4.70 P <.001
 Total 190
GBD Geographies regions
 Caribbean 2 307 209 63.52 (24.94–94.03) 97 8 P <.001
 Central Asia 1 594 208 35.02 (31.25–38.91) -—-
 Central Europe 1 390 14 3.59 (2.17–5.95) -—-
 Central Latin America 5 14,989 5173 32.19 (19.54–46.34) 99 2.72 P <.001
 Central sub-Saharan Africa 1 74 18 24.32 (16.40–35.39) -—-
 East Asia 1 44,163 93 0.21 (0.07–0.15) -—-
 Eastern sub-Saharan Africa 25 22,299 7209 36.63 (24.48–49.71) 99 11.27 P <.001
 North Africa and Middle East 49 56,116 6087 9.98 (6.71–13.82) 99 4.39 P <.001
 Oceania 1 400 22 5.50 (3.62–8.15) -—-
 South Asia 72 29,770 5828 16.47 (11.92–21.59) 99 7.81 P <.001
 Southeast Asia 23 25,964 6792 38.30 (25.52–51.96) 99 11.21 P <.001
 Southern sub-Saharan Africa 2 271 88 30.39 (14.18–49.56) 91 1.80 P <.001
 West Africa 1 252 108 42.86 (36.88–49.03) -—-
 Western sub-Saharan Africa 6 4399 1726 36.72 (7.58–72.83) 99 21.35 P <.001
 Total 190
WHO region
 African 30 26,291 8767 35.99 (24.72–48.09) 99 11.67 P <.001
 Americas 7 15,296 5382 40.73 (24.38–58.21) 99 5.52 P <.001
 Eastern Mediterranean 56 57,212 6176 15.33 (10.19–21.28) 99 8.55 P <.001
 European 8 5513 2348 23.67 (5.88–48.51) 99 14.20 P <.001
 South-East Asia 71 35,101 5390 13.24 (9.69–17.24) 99 5.57 P <.001
 Western Pacific 18 60,575 5512 40.90 (26.74–55.88) 99 10.44 P <.001
 Total 190
Countries
 Afghanistan 2 2763 791 31.91 (21.68–43.11) 95 0.67 P <.001
 Burkina Faso 1 385 25 6.49 (4.38–9.35) -—-
 Cambodia 2 1867 684 44.03 (24.44–64.65) 97 2.20 P <.001
 Colombia 1 6945 2182 36.10 (34.77–37.21) -—-
 Cuba 2 307 209 63.52 (24.94–94.03) 97 0.0800 P <.001
 Democratic Republic 1 74 18 24.32 (16.34–35.36) -—-
 Egypt 4 3206 331 10.92 (5.30–18.20) 97 1.06 P <.001
 Ethiopia 16 9058 3974 37.30 (22.49–53.45) 99 10.95 P <.001
 Guatemala 1 5228 1207 23.09 (21.93–24.22) -—-
 Honduras 1 2554 1493 58.46 (56.55–60.38) -—-
 India 21 7838 1805 16.02 (9.61–23.60) 98 4.90 P <.001
 Indonesia 2 625 362 31.60 (0.0–99.92) 99 44.30 P <.001
 Iran 17 33,680 1710 4.62 (2.89–6.72) 97 0.86 P <.001
 Iraq 2 1275 176 14.25 (10.78–18.10) 24 0.07 P =.25
 Kenya 2 10,207 1709 16.67 (15.70–17.66) 0 0.01 P =.52
 Madagascar 1 241 14 5.81 (3.60–9.61) -—-
 Malaysia 7 4807 1315 39.38 (21.58–58.77) 99 6.86 P <.001
 Mali 1 971 487 50.15 (46.97–53.34) -—-
 Nepal 33 12,647 1773 11.96 (7.35–17.48) 98 5.08 P <.001
 Nicaragua 1 880 238 27.05 (24.11–30) -—-
 Nigeria 3 1440 1196 63.25 (16.50–97.87) 99 19.32 P <.001
 Oman 1 436 41 9.40 (6.94–12.45) -—-
 Pakistan 7 1932 1060 58.61 (29.80–84.54) 99 15.58 P <.001
 Palestine 6 5456 959 12.73 (5.54–22.28) 98 2.45 P <.001
 Philippines 3 937 540 60.75 (30.74–86.91) 98 7.04 P <.001
 Saudi Arabia 2 1393 11 0.62 (0.01–1.95) 81 0.0015 P =.02
 Senegal 1 1603 18 1.12 (0.42–1.45) -—-
 Slovakia 1 390 14 3.59 (2.11–5.90) -—-
 South Africa 2 271 88 30.39 (14.18–49.56) 91 1.80 P <.001
 Sri Lanka 1 145 28 19.31 (13.86–26.59) -—-
 Sudan 4 930 364 40.03 (9.58–76.61) 98 13.86 P <.001
 Syria 1 1469 5 0.34 (0.09–0.73) -—-
 Taiwan 1 44,163 93 0.21 (0.07–0.15) -—-
 Tajikistan 1 594 208 35.02 (31.28–38.93) -—-
 Tanzania 2 1863 1148 67.41 (14.04–99.96) 99 17.39 P <.001
 Thailand 14 13,846 1422 9.96 (4–18.17) 99 5.10 P <.001
 The Republic Of Marshall Island 1 400 22 5.50 (3.59–8.13) -—-
 Turkey 6 4529 2126 26.41 (4.04–58.99) 99 17.47 P <.001
 Venezuela 1 282 53 18.79 (14.67–23.77) -—-
 Vietnam 3 8327 2840 65.04 (26.48–94.62) 99 12.23 P <.001
 West Africa 1 252 108 42.86 (36.88–49.03) -—-
 Yemen 10 4672 728 14.85 (8.75–22.20) 97 2.26 P <.001
 Total 190
Age
 5–10 85 102,795 12,330 19.25 (14.69–24.25) 99 8.01 P <.001
 10–15 85 61,428 15,140 22.32 (16.56–28.68) 99 11.63 P <.001
 Total 190
Gender
 Male 108 54,944 10,029 33.15 (28.17–38.33) 99 7.95 P <.001
 Female 108 49,297 8102 31.09 (26.04–36.37) 99 8.48 P <.001
 Total 108
District/City/province
 Aga 1 726 154 21.21 (18.24–24.21) -—-
 Ahmednagar 1 624 54 8.65 (6.63–11.06) -—-
 Amalapuram 1 200 13 6.50 (3.88–10.84) -—-
 Ambara 1 375 95 25.33 (21.20–29.97) -—-
 Ambatoboeny 1 241 14 5.81 (3.31–9.35) -—-
 Amber 1 384 55 14.32 (11.14–18.15) -—-
 Amhara 1 798 248 31.08 (27.93–34.35) -—-
 Amran 1 360 33 9.17 (6.69–12.67) -—-
 Anakaputhur 1 250 19 7.60 (4.51–11.21) -—-
 Angolela 1 664 75 11.30 (9.14–13.96) -—-
 Antioquia 1 6045 2182 36.10 (34.86–37.28) -—-
 Ardabil 1 1070 16 1.50 (0.95–2.44) -—-
 Baglung 1 260 26 10 (6.87–14.21) -—-
 Baharatpur 1 300 62 20.67 (16.51–25.64) -—-
 Bahir Dar 1 2372 1463 61.68 (59.70–63.61) -—-
 Bajawar 1 402 243 60.45 (55.59–65.11) -—-
 Bandar Abbas 1 1456 4 0.27 (0.06–0.65) -—-
 Benin 1 249 164 65.86 (59.75–71.343) -—-
 Berber 1 100 87 87 (78.83–91.97) -—-
 Bhaili 1 250 27 10.80 (7.43–15.18) -—-
 Bhaktapur 3 568 45 6.68 (0.55–18.20) 94 2.31 P <.001
 Bhopal 1 300 45 15 (11.24–19.35) -—-
 Bijapur 1 58 6 10.34 (5.45–21.21) -—-
 Bochesa 1 384 84 21.88 (17.90–26.18) -—-
 Budaun 1 367 49 13.35 (10.30–17.26) -—-
 Bushehr 1 203 23 11.33 (7.77–16.50) -—-
 Chandigarh 1 360 22 6.11 (3.98–9) -—-
 Chiang Mai 1 781 146 18.69 (15.85–21.35) -—-
 Chiang Mal 1 403 120 29.78 (25.36–34.31) -—-
 Chitwan 1 296 23 7.77 (5.35–11.49) -—-
 Dadeldhura 1 530 161 30.38 (26.62–34.42) -—-
 Dahahira 1 436 41 9.40 (7.07–12.56) -—-
 Dak Lak 1 7710 2328 30.19 (29.18–31.23) -—-
 Dakar 1 1603 18 1.12 (0.62–1.68) -—-
 Damanhur 1 810 47 5.80 (4.27–7.51) -—-
 Damascus 1 1469 5 0.34 (0.16–0.81) -—-
 Damauli 1 150 27 18 (12.74–24.97) -—-
 Damghan 1 764 70 9.16 (7.35–11.45) -—-
 Davao del Norte 1 572 248 43.36 (39.35–47.45) -—-
 Democratic Republic of Sao Tome 1 252 108 42.86 (36.94–49.03) -—-
 Dera 1 382 211 55.24 (50.22–60.13) -—-
 Dharan 2 298 14 4.62 (2.32–7.57) 0 0.02 P =.45
 Dharan Submetropolitan 1 400 43 10.75 (8.10–14.19) -—-
 Dir 1 324 266 82.10 (77.94–86.39) -—-
 Duhok 1 1172 158 13.48 (11.59–15.51) -—-
 Eskisehir 1 132 10 7.58 (4.06–13.30) -—-
 Fangouné Bamanan and Diakalèl 1 971 487 50.15 (47.01–53.29) -—-
 Gaza 1 432 53 12.27 (9.57–15.75) -—-
 Golestan 1 800 31 3.87 (2.71–5.42) -—-
 Gondar 1 304 82 26.97 (22.28–32.22) -—-
 Hakim 1 333 34 10.21 (7.52–14.03) -—-
 Hanoi 1 217 144 66.36 (59.82–72.27) -—-
 Harbu 1 400 38 9.50 (6.89–12.67) -—-
 Huaphan 1 74 18 24.32 (16.34–35.37) -—-
 Ibb 2 558 119 20.70 (2.04–51.25) 98 5.39 P <.001
 Imo 1 132 26 19.70 (13.98–27.41) -—-
 Itahari 1 200 26 13 (9.17–18.48) -—-
 Izmir 1 1127 128 11.36 (9.65–13.36) -—-
 Jahrom 1 431 1 0.23 (0.12–1.40) -—-
 Jakarta 1 157 2 1.27 (0.62–4.80) -—-
 Janakpurdham 1 155 14 9.03 (5.68–14.77) -—-
 Jaragedo 1 396 72 18.18 (14.74–22.32) -—-
 Jeddah 1 581 1 0.17 (0–0.82) -—-
 Kampongcham 1 251 138 54.98 (48.80–60.98) -—-
 Kancheepuram 1 335 133 39.70 (34.61–45.03) -—-
 Kashmir 2 482 306 53.99 (13.92–91.16) 98 9.95 P <.001
 Kaski 2 2254 123 5.17 (3.75–6.80) 0 0.02 P =.34
 Kathmandu 12 4523 929 14.53 (4.36–29.18) 99 9.90 P <.001
 Kavrepalanchowk 1 360 81 22.50 (18.50–27.10) -—-
 Kenya 1 9801 1646 16.79 (15.91–17.40) -—-
 Khan Younis 2 2740 705 24.99 (7.88–47.68) 99 2.94 P <.001
 Khartoum 2 620 248 30.42 (7.32–60.69) 97 4.79 P <.001
 Khodabandeh 1 250 17 3.27 (2.10–5.22) -—-
 Khurda 1 250 20 8 (5.39–12.17) -—-
 Khyber Pakhtunkhwa 1 222 222 0 (98.23–99.99) -—-
 Kutahya 1 471 51 12.10 (9.36–15.27) -—-
 Lahore 1 300 36 12 (8.92–16.27) -—-
 Lalitpur 1 1392 40 2.87 (2.04–3.82) -—-
 Legaspi 1 64 30 46.88 (35.35–58.81) -—-
 Lipis 1 498 261 52.41 (48.02–56.76) -—-
 Lokhim 1 359 31 8.64 (6.23–12.07) -—-
 Lorestan 1 366 36 9.84 (7.16–13.29) -—-
 Lower Dir 1 184 58 31.52 (25.36–38.61) -—-
 Mahiyangana 1 145 28 19.31 (13.76–26.53) -—-
 Maksegnit and Enfranz 1 520 352 64 (59.90–67.82) -—-
 Marvdasht 1 337 6 1.78 (0.83–3.84) -—-
 Matanzas 1 107 46 42.99 (34.12–52.44) -—-
 Mthatha 1 162 65 40.12 (32.96–47.82) -—-
 Muang Pathum Thani 1 202 1 0.5 (0.1–2.79) -—-
 Nablus 2 955 48 4.84 (3.23–6.74) 5.39 0 P =.30
 Nairobi 1 406 63 15.52 (12.26–19.31) -—-
 Nakhon Pathom 1 814 29 3.56 (2.47–5.05) -—-
 Nan 1 1010 606 60 (56.96–63.01) -—-
 Nellimarla Mandal 1 124 17 13.71 (8.93–21) -—-
 Nopphitam 1 299 34 11.37 (8.06–15.31) -—-
 North‑eastern India 1 435 50 11.49 (8.77–14.78) -—-
 Nyamikoma 1 830 752 90.60 (88,46–92.44) -—-
 Ofa 1 391 357 91.30 (88.03–93.64) -—-
 Ogun State 1 1059 1006 95 (93.69–96.34) -—-
 Ombda 1 210 29 13.81 (9.70–19.06) -—-
 Omkoi 1 375 33 8.80 (6.24–12.02) -—-
 Pahang 1 300 208 69.33 (63.88–74.24) -—-
 Palajunoj 1 5228 1207 23.09 (21.84–24.14) -—-
 Peninsular 1 2902 288 10.44 (3.03–21.56) 98 1.21 P <.001
 Peshawar 1 200 140 70 (63.29–75.86) -—-
 Phitsanulok 1 352 12 3.41 (2–5.9) -—-
 Pinar del Río 1 200 163 81.50 (75.49–86.20) -—-
 Pokhara 1 100 6 6 (2.88–12.57) -—-
 Puducherry 1 1172 660 56.31 (53.47–59.15) -—-
 Qalqilia 1 1329 153 11.51 (9.69–13.14) -—-
 Qom 1 2410 119 4.94 (4.01–5.75) -—-
 Ratchaburi 1 252 12 4.76 (2.80–8.18) -—-
 Rishikesh 1 461 26 5.64 (3.89–8.15) -—-
 Roxas 1 301 262 87.04 (82.78–90.38) -—-
 Rupandehi 1 217 114 52.53 (45.91–59.06) -—-
 Rural coastal Tanzania 1 1033 396 38.33 (35.40–41.33) -—-
 Rwanda 1 109 23 21.10 (14.74–29.82) -—-
 Sakon Nakhon 1 417 121 29.02 (24.87–33.55) -—-
 Samut Sakhon 1 4014 152 3.79 (3.15–4.34) -—-
 Sana’a 2 573 162 7.75 (0–28.70) 99 4.12 P <.001
 Sanandaj 1 400 15 3.75 (2.30–6.11) -—-
 Sanliurfa 1 1820 1759 96.65 (95.73–97.39) -—-
 Saptari 1 285 8 2.81 (1.41–5.42) -—-
 Saraburi 1 263 5 1.90 (0.84–4.39) -—-
 Sarawak 1 264 117 44.32 (38.49–50.35) -—-
 Sari 1 1100 56 5.09 (3.87–6.48) -—-
 Sekota 1 402 38 9.45 (6.66–12.44) -—-
 Shahriar 1 1902 294 15.46 (13.68–16.95) -—-
 Skardu 1 300 95 31.67 (26.65–37.13) -—-
 South Khorasan 1 2169 171 7.88 (6.71–8.99) -—-
 Srinagar 1 514 191 37.16 (31.06–41.40) -—-
 Suka 1 468 360 76.92 (72.93–80.56) -—-
 Tabuk 1 812 10 1.23 (0.59–2.17) -—-
 Taifg 1 150 18 12 (7.68–18.14) -—-
 Taipei 1 44,163 93 0.21 (0–0.04) -—-
 Taiz 2 863 136 14.70 (5.44–27.41) 95 1.22 P <.001
 Tam Nong 1 400 368 92 (88.91–94.26) -—-
 Tana 1 520 458 88.08 (85.04–90.62) -—-
 Tanta 1 1520 112 7.37 (5.94–8.58) -—-
 Tapah 1 508 308 60.63 (56.34–64.83) -—-
 Tegucigalpa 1 2554 1493 58.46 (56.54–60.36) -—-
 Tehran 2 19,459 835 4.20 (3.85–4.56) 0 0.01 P =.68
 Vadodara 1 140 16 11.43 (7.35–17.91) -—-
 Varamin 1 293 16 5.46 (3.43–8.72) -—-
 Wonji Shoa Sugar 1 403 312 77.42 (73.13–81.28) -—-
 Yıgılca 1 523 89 17.02 (14–20.44) -—-
 Zakho 1 103 18 17.48 (11.56–26.08) -—-
 Total 147

Table 3.

Sub-group analysis based on type of helminth parasites

Type of helminth parasites No studies Sample size Infected Pooled prevalence (95% CI) Heterogeneity
I2 τ2 p-value
Toxocara spp. 1 222 23 10.36 (7.08–15.13) - - -
Ascaris lumbricoides 139 123,449 12,011 9.47 (7.32–11.85) 97 5.26 P <.001
Heterophyes heterophyes 1 417 1 8.87 (6.34–11.85) - - -
Schistosoma spp. 30 26,128 2472 7.82 (3.43–13.76) 99 0.0713 P <.001
Trichuris trichiura 105 85,018 6499 5.83 (3.86–8.16) 99 0.0554 P <.001
Hookworms 92 72,923 5421 4.57 (3.30–6.03) 97 0.0239 P <.001
Hymenolepis nana 98 80,871 2427 3.03 (2.35–3.78) 97 0.0099 P <.001
Enterobius vermicularis 86 112,682 3055 2.75 (1.97–3.65) 98 0.0135 P <.001
Rhabditis spp. 1 251 6 2.39 (1.16–5.18) - - -
Taenia spp. 52 55,028 877 2.34 (1.45–3.42) 97 0.0129 P <.001
Fasciola spp. 9 6440 95 1.83 (0. 33–4.36) 95 0.0116 P <.001
Strongyloides stercoralis 33 31,326 576 1.65 (0.76–2.83) 96 0.0129 P <.001
Wuchereria bancrofti 1 1033 15 1.45 (0.81–2.32) - - -
Opisthorchis spp. 8 9092 95 1.44 (0.23–3.55) 95 0.0091 P <.001
Dicrocoelium dendriticum 2 2402 12 0.62 (0.04–1.73) 79 0.11 P <.001
Trichostrongylus spp. 3 3502 23 0.58 (0.01–1.78) 92 0.0022 P <.001
Gongylonema spp. 1 417 1 0. 24 (0.04–1.33) - - -

Quality assessment

The quality of the studies was assessed using the Newcastle–Ottawa Scale, as detailed in Supplementary Table 2 [21]. Scores were assigned across three domains: Selection (maximum 5 stars), Comparability (maximum 2 stars), and Outcome (maximum 3 stars).

Studies scoring 7–9 on the Newcastle–Ottawa Scale were classified as high quality and included. Studies scoring 4–6 were classified as moderate quality. Studies scoring < 4 or lacking sufficient methodological clarity were excluded due to high risk of bias or insufficient data.

Data synthesis and statistical analysis

Data were extracted independently by two reviewers (ZG and HS) using a standardized Excel form. The extracted data included study characteristics, sample size, diagnostic methods, and prevalence rates. Cross-verification was conducted by a third author (AVE) to ensure data accuracy.

A range of statistical techniques was applied to thoroughly assess the worldwide prevalence of helminthic infections in school-aged children. The overall pooled prevalence was calculated using a 95% confidence interval (CI).

A random-effects model incorporating the Freeman-Tukey double arcsine transformation was used to estimate the pooled prevalence. Publication bias was evaluated through Egger’s funnel plot, Begg’s rank test, the Luis Furuya-Kanamori (LFK) index, and the Doi plot [22].

An LFK index outside ± 2 was classified as major asymmetry, between ± 1 and ± 2 as minor asymmetry, and within ± 1 as symmetry, indicating no publication bias.

To evaluate heterogeneity across studies, Cochrane’s Q test and the inconsistency index (I2) were applied. I2 values were interpreted as follows: 0–25% indicated low heterogeneity, 25–50% moderate heterogeneity, and 50–75% high heterogeneity. A p-value < 0.05 was considered statistically significant. All statistical analyses were carried out using the meta and metasens packages in R (version 3.6.1) [23].

Results

Characteristics of included studies

The systematic search conducted in this study initially identified 24,256 articles. We retrieved 20,900 records from Google Scholar, 1,879 from PubMed, 1,033 from Web of Science, 352 from Scopus, and 92 from EMBASE.

After screening, 228 full-text articles were reviewed for eligibility. Of these, two studies were excluded due to insufficient data, two for overlapping data, three for lacking participant information, and 31 for not containing original data (e.g., letters, reviews, workshop reports, and theses). Ultimately, 190 articles met the inclusion criteria and were included in the meta-analysis following critical appraisal (Fig. 1).

Data on the prevalence of helminthic parasites have been reported from 42 countries, and 199,988 schoolchildren, with Nepal (33 studies) and India (21 studies) being the most frequently represented (Table 2). The estimated global prevalence was 20.6% (17.2–24.3%) (Fig. 2).

Fig. 2.

Fig. 2

Forest plots for random-effects meta-analysis of helminthic parasites among schoolchildren (The boxes indicate the effect size of the studies (prevalence) and the whiskers indicate its confidence interval for corresponding effect size. There is no specific difference between white and black bars, only studies with a very narrow confidence interval are shown in white. In the case of diamonds, their size indicates the size of the effect, and their length indicates confidence intervals)

According to the data collected in the included studies, a map was generated using QGIS3 software (https://qgis.org/en/site/) to illustrate the prevalence of helminthic parasites among schoolchildren in various regions of the world (Fig. 3a). A Sankey plot indicated that the largest number of studies in GBD regions was related to Nepal (Fig. 3b).

Fig. 3.

Fig. 3

The global prevalence of helminthic parasites among schoolchildren in different geographical regions of the world based on included studies (https://qgis.org/en/site/) (a). Additionally, the Sankey plot presents data concerning the majority of studies related to countries and GBD Region based on the included studies (b)

Prevalence based on type of helminthic parasites, type of samples, and diagnostic techniques

The overall prevalence of helminthic parasites among schoolchildren was as detailed: 10.36% (7.08–15.13%) for Toxocara spp., 9.47% (7.32–11.85%) for A. lumbricoides, 8.87% (6.34–11.85%) for Heterophyes heterophyes, 7.82% (3.43–13.76%) for Schistosoma spp., 5.83% (3.86–8.16%) for T. trichiura, 4.57% (3.30–6.03%) for hookworms, 3.03% (2.35–3.78%) for Hymenolepis nana, 2.75% (1.97–3.65%) for Enterobius vermicularis, 2.39% (1.16–5.18%) for Rhabditis spp., 2.34% (1.45–3.42%) for Taenia spp., 1.83% (0.33–4.36%) for Fasciola spp., 1.65% (0.76–2.83%) for Strongyloides stercoralis, 1.45% (0.008–2.32%) for Wuchereria bancrofti, 1.44% (0.23–3.55%) for Opisthorchis spp., 0.62% (0.04–1.73%) for Dicrocoelium dendriticum, 0.58% (0.01–1.78%) for Trichostrongylus spp., 0.24% (0.04–1.33%) for Gongylonema spp. (Table 3).

The highest pooled prevalence based on type of sample was estimated at 47.27% (18.72–76.83%) for studies using both stool and urine samples (Table 2). Based on the diagnostic methods used, the highest prevalence was reported in studies employing the Kato-Katz technique, with an estimated rate of 51.9% (20.65–82.34%) (Table 2).

Prevalence based on WHO regions, country, socio-economic status, educational level, age, and gender

WHO regional estimates of prevalence spanned from 40.90% to 13.24%, with 40.90% (26.74–55.88%) in Western Pacific Region, 40.73% (24.38–58.21%) in Region of the Americas, 35.99% (24.72%– 48.09%) in African Region, 23.67% (5.88–48.51%) in European Region, 15.33% (10.19–21.28%) in Eastern Mediterranean Region, 13.24% (9.69–17.24%) in South-East Asian Region (Table 2). Findings from country-based analyses revealed that Tanzania had the highest prevalence (67.41%, 14.04–99.96%) followed by Vietnam (65.04%, 26.48–94.62%) (Table 2).

The estimated pooled prevalence based on countries income level ranged from 26.95% to 2.67%, with the highest rate observed in low income (26.95%, 18.74–36.03%) (Table 2). Based on the HDI, the highest prevalence was observed in countries with low human development, at 35.35% (25.97–45.34) (Table 2).

Analysis by education level revealed that primary school children had the greatest pooled prevalence, 21.86% (17.96–26.03%) (Table 2). Furthermore, schoolchildren aged 10–15 years showed the highest prevalence rate among all age groups, estimated at 22.32% (16.56–28.68%) (Table 2). Additionally, the highest pooled prevalence as indicated by gender was observed among male schoolchildren, at 33.15% (28.17–38.33%) (Table 2).

Prevalence in association with climatic factors

The analyses revealed that regions with average annual rainfall of 400–1000 mm 30.85% (21.77–40.73%) had the highest rate of pooled prevalence (Table 2). Furthermore, regions with average temperature of >20 °C (25.94%, 21.15–31.04%) had the highest rate of prevalence for helminthic parasites among schoolchildren (Table 2). Moreover, the highest pooled prevalence rate of 21.42% (17.10–26.07%) was observed at a humidity range of 40–75% (Table 2). In addition, we found that tropical rainforest climate had the highest prevalence rate (35.44%, 22.47–49.61%) (Table 2).

Meta regression

Significant heterogeneity was detected for annual rainfall and year of publication, though the association with annual rainfall was not statistically significant (slop = 13.167, p < 0.07), and year of publication for all studies included (slop = 0.411, p < 0.06) (Fig. 4a-b).

Fig. 4.

Fig. 4

The global prevalence of helminthic parasites among schoolchildren in different geographical regions of the world based on annual rainfall and year of publication (the pink line is the regression line, which was plotted based on the intercept and the slope of the regression model). The different coloured bubbles represent the countries under study, and their sizes indicate the effect size of each study

Publication bias

A non-significant publication bias was detected using Egger’s test (t = 5.59, p < 0.001). Furthermore, there was a major asymmetry in the Doi plot (LFK index: 2.71) (Fig. 5 a-c).

Fig. 5.

Fig. 5

Eggers funnel plot (a) and Beggs plot (b) used to evaluate publication bias related to the global prevalence of helminthic parasites among schoolchildren according to the studies included; colored circles represent individual studies. The central line indicates the effect size, while the other two lines outline the corresponding confidence intervals. The Doi plot (c), which also reflects the publication bias, reveals a Luis Furuya-Kanamori (LFK) index of 2.71, indicating major asymmetry

Quality assessment

According to the quality assessment, 120 of the 190 studies were rated as high quality (scores of 7–9), and 70 were rated as moderate quality (scores of 4–6) (Supplementary Table 2).

While Egger’s test detected some asymmetry (p < 0.001), this could reflect true heterogeneity due to variations in study design, location, or diagnostic sensitivity. The LFK index of 2.71 further indicated possible publication bias. However, the inclusion of studies with moderate-to-high quality scores (≥ 4) and clear eligibility criteria suggests a reliable evidence base. Still, the interpretation of the results should be with caution due to the inherent risk of reporting bias and study-level variability.

Discussion

This study emphasizes the substantial global impact of helminthic infections in schoolchildren, highlighting their continued role as a major public health concern, especially in low-income and tropical areas. The findings support earlier research showing that helminthiasis remains a significant health problem, predominantly in areas where sanitation is poor, clean water is scarce, and socioeconomic inequalities are noticeable [4, 5, 24, 25].

We observed the highest prevalence rates in the Western Pacific Region and the Region of the Americas, with Tanzania and Vietnam reporting the highest country-specific rates. These patterns reflect the impact of geographical and climatic factors on helminth transmission, as tropical and subtropical regions with warm temperatures and high rainfall offer the most favourable conditions for the survival and spread of STHs [5, 6].

The subgroup analyses in this study demonstrated notably high infection rates in low-income countries, where environmental and infrastructural conditions favour transmission. These findings are in line with studies from similar settings, and they point to socio-economic status as a primary risk determinant of helminth infection [4, 5, 10]. The elevated prevalence in low-income countries further focuses on the role played by poor medical facilities and poverty in perpetuating such infections [9].

Among the helminth species encountered, A. lumbricoides and Toxocara spp. were the most frequently isolated. This dominancy aligns with their widespread distribution and efficient transmission routes, e.g., ingestion of contaminated food or soil [10]. The high occurrence of A. lumbricoides supports its classification as major STHs by the WHO, affecting nearly two billion people globally [11]. These infections pose significant risks to children’s health, frequently causing iron-deficiency anaemia, delayed physical development, learning difficulties, and poor nutritional status [10, 17, 19].

Beyond STHs, our study revealed significant burdens from food-borne, water-borne, and vector-borne helminths, highlighting the need for targeted interventions. Schistosomiasis remains a major public health concern in endemic areas, particularly among school-aged children, who suffer from chronic morbidity including hepatic and urogenital inflammation, anemia, and cognitive impairments as a result of repeated exposure during water-contact activities [26]. Toxocariasis, primarily transmitted through contact with soil-contaminated hands or inadequately washed produce, poses significant health risks, including visceral and ocular larva migrans, exacerbation of asthma, and neurocognitive impairments [27]. The high pooled prevalence of H. heterophyes highlights the health risks associated with consuming raw or undercooked fish, which can lead to intestinal mucosal ulceration and abdominal pain that is often misdiagnosed [28].

A total of about 1.5 billion individuals globally are infected with STHs, with the highest burden residing in the tropics and subtropics most notably in sub-Saharan Africa, South America, and South Asia, where infection rates still persist higher than anywhere else. The environmental and soil conditions in such regions are conducive to survival of the STHs in the external environment. Inadequate personal and environmental hygiene, lack of access to safe water, and unsanitary facilities also promote transmission of STH infection [29]. Our study showed that climate poses a potent role in determining prevalence with high levels present in tropical rainforest and rainfall areas of 400–1000 mm per annum. These environments support survival of helminth eggs and larvae outside the host and hence transmission [13].

Variation in prevalence between species is also caused by variation in their diagnosis methods, with Kato-Katz technique having the highest rate of detection because of its sensitivity when counting STH eggs [12]. Although microscopy remains the global standard, DNA‑based diagnostics (e.g. conventional PCR, qPCR, multiplex PCR and LAMP) offer significantly higher sensitivity—especially in low-intensity infections—and the capacity to detect mixed-species helminth infections accurately, providing species-level identification and quantitative data beyond microscopy’s reach [12, 15, 16]. Differences in diagnostic methods across countries may lead to bias. Countries that use more sensitive methods such as Kato-Katz or molecular diagnostics will tend to report higher prevalence not necessarily due to higher infection rates, but due to improved detection. The difference may affect cross-country comparison and needs to be adjusted for while interpreting results.

High rates of helminthic infection in children demand stronger global commitment and intervention to eliminate these infectious diseases. Improved sanitation services, safe water accessibility, and mass drug administration (MDA) programs remain basis strategies [30]. Furthermore, integrating health education in schools to promote hygiene practices, such as handwashing and wearing shoes, would significantly reduce transmission [19].

The MDA holds significant promise for disease control, yet it also faces notable challenges and limitations. One of the major obstacles is the lack of adequate funding. Advancing research and development, conducting essential clinical trials to optimize treatment, and ensuring the procurement, distribution, and long-term maintenance of drug supplies all demand considerable financial and logistical resources that are currently insufficient. Moreover, the narrow range of available chemotherapeutic agents heightens the risk of drug resistance due to overuse.

Effective control of helminth infections requires more than only MDA. For schistosomiasis, key measures include minimizing snail breeding sites and promoting safe practices around recreational water use. To prevent fish- and food-borne helminths, raising community awareness about safe food handling, thorough cooking, and personal hygiene is vital for reducing transmission.

Effective pharmaco-epidemiological surveillance involves tracking drug efficacy, treatment coverage, and emerging resistance patterns, which requires investment in laboratory infrastructure, standardized monitoring protocols, and integration into national surveillance systems to detect and respond to resistance early [31]. While this strategy has shown some positive outcomes, the growing global threat of antimicrobial resistance, largely driven by excessive drug use, raises concerns that these short-term benefits may come at the cost of long-term consequences by promoting further drug resistance [32].

The study also revealed that children in primary schools were most affected, perhaps due to their increased exposure to infested soil and poor hygiene after playing or during daily activities [15]. The finding underscores the need for focused school-based deworming exercises and health education for preventing transmission among this vulnerable age group [16].

Although intestinal helminth infections rarely cause mortality, they are significant causes of disability among children and have long-term socioeconomic repercussions, including reduced earning capacity in adulthood. The parasitic infections most frequently pose significant challenges for children living in poverty especially in poor rural or urban areas with very limited access to clean water, sanitation, and hygiene (WASH) [7].

Enhancing socioeconomic conditions, along with implementing several key strategic interventions, is critical [33]. This approach involves the use of preventive chemotherapy for preschool and schoolchildren [29, 34]; ensuring availability of proper sanitation, waste management, improved hygiene, and safe water in both households and schools; advancing diagnostic and treatment services for individuals in STH-endemic regions; and promoting health awareness in at-risk populations to improve behavioural changes that lower transmission risk [35].

Limitations

This review has the listed limitations: 1) reliance on published data may have led to selection bias since studies from underrepresented regions or with non-significant results might have been excluded; 2) heterogeneity in diagnostic techniques among studies may affect the accuracy of prevalence estimates; 3) some subgroup analyses were based on a small number of studies, which may affect the stability and generalizability of the prevalence estimates. Therefore, caution is advised when interpreting these findings.

Conclusion

This meta-analysis provides a global overview of helminthic infections in schoolchildren and their disproportionate burden in tropical, resource-limited settings. The findings support the necessity for enhanced prevention and treatment measures to control the adverse health and developmental effects of helminthic infections. Future studies need to address longitudinal studies to evaluate the long-term effectiveness of interventions and study socioeconomic determinants of transmission of the helminths.

Recommendations

To make lasting progress in the fight against helminth infections among schoolchildren, several important steps are needed: 1) More long-term studies are essential to understand how well current interventions work over time. These studies should also explore how factors like poverty, living conditions, and the environment influence the spread of infections. This knowledge will help shape more effective and lasting solutions; 2) Expanding school-based deworming programs and improving access to WASH can make a meaningful difference in children's health. Making helminth control a national public health priority is crucial to reaching those most at risk; 3) Local education efforts that teach simple but powerful hygiene practices like handwashing and using safe toilets can greatly reduce the spread of infection. It's also vital to ensure that all children, especially those in underserved or remote areas, have fair access to preventive treatment.

Supplementary Information

Supplementary Material 1. (25.3KB, docx)
Supplementary Material 2. (49.1KB, docx)

Acknowledgements

We extend our sincere gratitude to the personnel at the Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran, and Jahrom University of Medical Sciences, Jahrom, Iran, for their dedicated support.

Abbreviations

STHs

Soil-transmitted helminths

WHO

World Health Organization

NTDs

Neglected tropical diseases

DALYs

Disability-adjusted life years

PRISMA

Preferred Reporting Items for Systematic Reviews and Meta-Analysis

GBD

Global Burden of Disease

CI

Confidence interval

LFK

Luis Furuya-Kanamori

MDA

Mass drug administration

WASH

Water, sanitation, and hygiene

Authors’ contributions

MB,AA, MP and AVE designed the study. ZG and HS searched for primary publications, screened, and appraised primary studies. ZG and HS extracted the data. MO was involved in data analysis. MB, KHN, GS, AA, AA and AVE were responsible for drafting the manuscript. MB and AVE corrected the final version of the manuscript. MB, MP, AA, and AVE supervised the project. All authors read and approved the final manuscript.

Funding

This study was supported by the Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran and Jahrom University of Medical Sciences, Jahrom, Iran (contract no. IR.QUMS.REC.1403.124).

Data availability

Data generated and analyzed in this study are included in the published article. Additional data are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Ethical approval for this study was granted by our institutional review board, as documented (no. IR.QUMS.REC.1403.124).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Milad Badri, Meysam Olfatifar, Zahra Gharibi, Kareem Hatam-Nahavandi and Mahendra Pal contributed equally to this work.

Contributor Information

Milad Badri, Email: badri22.milad@gmail.com.

Amir Abdoli, Email: a.abdoli25@gmail.com.

Aida Vafae Eslahi, Email: Vafaeeslahia@gmail.com.

References

  • 1.Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–27. 10.1056/NEJMra064142. [DOI] [PubMed] [Google Scholar]
  • 2.Magalhães AR, Codeço CT, Svenning J-C, Escobar LE, de Vuurst P, Gonçalves-Souza T. Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infect Dis Poverty. 2023;12:32. 10.1186/s40249-023-01084-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Mitra AK, Mawson AR. Neglected tropical diseases: epidemiology and global burden. Trop Med Infect Dis. 2017;2: 36. 10.3390/tropicalmed2030036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gyawali P, Khanal S, Soares Magalhaes RJ. Helminth infections in an indigenous community of Nepal: the role of individual and household socio-economic factors. Glob J Med Res Dis. 2013;13:33–9. [Google Scholar]
  • 5.Husen EA, Tafesse G, Hajare ST, Chauhan NM, Sharma RJ, Upadhye VJ. Cross-Sectional Study on Assessment of Frequency of Intestinal Helminth Infections and Its Related Risk Factors among School Children from Adola Town. Ethiopia Biomed Res Int. 2022;2022:5908938. 10.1155/2022/5908938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Tahseen Q. Helminth parasites: The cause of distress and diseases. Infect Dis Your Heal. Springer Singapore; 2018. p. 135–87. 10.3390/tropicalmed2030036
  • 7.Weatherhead JE, Hotez PJ, Mejia R. The global state of helminth control and elimination in children. Pediatr Clin North Am. 2017;64:867. 10.1016/j.pcl.2017.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J, et al. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008;118:1311–21. 10.1172/JCI34261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bhanot P. Introduction to Parasites. Pract Handb Microbiol. CRC Press; 2021. p. 665–82. 9781003099277.
  • 10.Riaz M, Aslam N, Zainab R, Aziz-Ur-Rehman, Rasool G, Ullah MI, et al. Prevalence, risk factors, challenges, and the currently available diagnostic tools for the determination of helminths infections in human. Eur J Inflamm. 2020;18:2058739220959915. 10.1177/205873922095991.
  • 11.Edogiawerie D, Turay AA, Okpala HO. Prevalence of intestinal helminths among primary school children in Ihumudumu community, Ekpoma, Edo, Nigeria. Int J Community Res. 2016;5(1):12–21. [Google Scholar]
  • 12.Sturrock SL, Yiannakoulias N, Sanchez AL. The Geography and Scale of Soil-Transmitted Helminth Infections. Curr Trop Med Reports. 2017;4:245–55. 10.1007/s40475-017-0126-2. [Google Scholar]
  • 13.Afolabi MO, Adebiyi A, Cano J, Sartorius B, Greenwood B, Johnson O, et al. Prevalence and distribution pattern of malaria and soil-transmitted helminth co-endemicity in sub-Saharan Africa, 2000–2018: a geospatial analysis. PLoS Negl Trop Dis. 2022;16:e0010321. 10.1371/journal.pntd.0010321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Khurana S, Singh S, Mewara A. Diagnostic techniques for soil-transmitted helminths-Recent advances. Res Rep Trop Med. 2021;181–96. 10.3390/tropicalmed5020093. [DOI] [PMC free article] [PubMed]
  • 15.Mbong Ngwese M, Prince Manouana G, Nguema Moure PA, Ramharter M, Esen M, Adégnika AA. Diagnostic techniques of soil-transmitted helminths: impact on control measures. Trop Med Infect Dis. 2020;5: 93. 10.3390/tropicalmed5020093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Miswan N, Singham GV, Othman N. Advantages and limitations of microscopy and molecular detections for diagnosis of soil-transmitted helminths: an overview. Helminthologia. 2022;59:321–40. 10.2478/helm-2022-0034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kumar H, Jain K, Jain R. A study of prevalence of intestinal worm infestation and efficacy of anthelminthic drugs. Med J Armed Forces India. 2014;70:144–8. 10.1016/j.mjafi.2013.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Alemayehu B, Tomass Z, Wadilo F, Leja D, Liang S, Erko B. Epidemiology of intestinal helminthiasis among school children with emphasis on Schistosoma mansoni infection in Wolaita zone. Southern Ethiopia BMC Public Health. 2017;17:1–10. 10.1186/s12889-017-4499-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mirisho R, Neizer ML, Sarfo B. Prevalence of Intestinal Helminths Infestation in Children Attending Princess Marie Louise Children’s Hospital in Accra. Ghana J Parasitol Res. 2017;1:8524985. 10.1155/2017/8524985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Selçuk AA. A guide for systematic reviews: PRISMA. Turk Arch Otorhinolaryngol. 2019;57:57. 10.5152/tao.2019.4058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS ONE. 2016;11:e0147601. 10.1371/journal.pone.0147601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Barendregt JJ, Doi SA. MetaXL user guide. Version. 2016;4:2011–6. [Google Scholar]
  • 23.Team RC. R Core Team R. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria; 2016. ISBN 3–900051–07–0, URL. R-project. org/.
  • 24.Drake LJ, Bundy DAP. Multiple helminth infections in children: impact and control. Parasitology. 2001;122:S73–81. 10.1017/S0031182000017662. [DOI] [PubMed] [Google Scholar]
  • 25.Abdoli A, Olfatifar M, Eslahi AV, Moghadamizad Z, Nowak O, Pirestani M, Karimipour-Saryazdi A, Badri M, Karanis P. Prevalence of intestinal protozoan parasites among Asian schoolchildren: a systematic review and meta-analysis. Infection. 2024;52(6):2097–133. 10.1007/s15010-024-02339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383:2253–64. 10.1016/S0140-6736(13)61949-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rostami A, Riahi SM, Hofmann A, Ma G, Wang T, Behniafar H, et al. Global prevalence of Toxocara infection in dogs. Adv Parasitol. 2020;109:561–83. 10.1016/bs.apar.2020.01.017. [DOI] [PubMed] [Google Scholar]
  • 28.Chai J-Y, Jung B-K. Fishborne zoonotic heterophyid infections: an update. Food Waterborne Parasitol. 2017. 10.1016/j.fawpar.2017.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Chen J, Gong Y, Chen Q, Li S, Zhou Y. Global burden of soil-transmitted helminth infections, 1990–2021. Infect Dis Poverty. 2024;13:68–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Hotez PJ, Lo NC. Neglected tropical diseases: public health control programs and mass drug administration. Hunter’s Trop Med Emerg Infect Dis. Elsevier; 2020. p. 209–13. 10.1016/B978-0-323-55512-8.00027-2.
  • 31.Harhay MO, Horton J, Olliaro PL. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev Anti-Infect Ther. 2010;8:219–34. 10.1586/eri.09.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Fong IW, Fong IW. Mass Drug Treatment of Tropical Diseases: Is It Really Progress? Curr Trends Concerns Infect Dis. 2020;217–39. 10.1007/978-3-030-36966-8_9.
  • 33.Engels D, Zhou X-N. Neglected tropical diseases: an effective global response to local poverty-related disease priorities. Infect Dis poverty. 2020;9:9–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Tinkler SH. Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths–can we learn nothing from veterinary medicine? One Health. 2020;9:100106. 10.1016/j.onehlt.2019.100106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Nath TC, Islam S, Eom KS. Integration of health education to improve the compliance to MDA for soil-transmitted helminths infection in Bangladesh: an implementation research. Int J Infect Dis. 2020;101:334–5. 10.1016/j.ijid.2020.09.880. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material 1. (25.3KB, docx)
Supplementary Material 2. (49.1KB, docx)

Data Availability Statement

Data generated and analyzed in this study are included in the published article. Additional data are available from the corresponding author on reasonable request.


Articles from BMC Public Health are provided here courtesy of BMC

RESOURCES