Abstract
Right anterior oblique cineangiograms from 19 subjects without evidence of heart disease were analysed to assess regional non-uniformity in the time of onset of systolic inward motion, amplitude of systolic motion, time of peak inward motion, and wall motion during the isovolumic relaxation period. The left ventricular silhouette was digitised frame by frame for a full cardiac cycle. These four wall motion variables were quantitatively measured along 40 chords drawn from equally spaced points on the end diastolic silhouette to the nearest point on the end systolic silhouette. Onset of systolic inward motion was significantly non-uniform, being delayed by up to 120 ms in the anterior apical chords compared with the areas of earliest inward motion near the base of the heart. More uniformity was noted in time of peak inward motion; the differences between regions were not statistically significant. Amplitude of systolic motion was significantly less at the apical and mid-anterior segments than elsewhere in the heart. Wall motion during the isovolumic relaxation period is outward and greatest in the mid-anterior segments, but inward in the proximal inferior segments and mitral valve region. These data suggest that contraction of muscle fibres in the anterior apical segments is initially isometric due to the considerable afterload at the onset of contraction, this afterload being the result of earlier contraction elsewhere in the ventricle. This may partly explain the propensity for aneurysms to be located in the anterior apical region. When the timing and extent of wall motion in disease states are analysed, account must be taken of the non-uniformity in the normal heart.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alam S. E., Tansey W. A., Cameron A., Kemp H. G., Jr Asynchronous ventricular relaxation: an angiographic temporal analysis of asynchronous left ventricular relaxation in man. Am J Cardiol. 1979 Jan;43(1):41–46. doi: 10.1016/0002-9149(79)90042-0. [DOI] [PubMed] [Google Scholar]
- Altieri P. I., Wilt S. M., Leighton R. F. Left ventricular wall motion during the isovolumic relaxation period. Circulation. 1973 Sep;48(3):499–505. doi: 10.1161/01.cir.48.3.499. [DOI] [PubMed] [Google Scholar]
- Armour J. A., Randall W. C. Electrical and mechanical activity of papillary muscle. Am J Physiol. 1970 Jun;218(6):1710–1717. doi: 10.1152/ajplegacy.1970.218.6.1710. [DOI] [PubMed] [Google Scholar]
- Bhargava V., Warren S., Vieweg W. V., Shabetai R. Quantitation of left ventricular wall motion in normal subjects: comparison of various methods. Cathet Cardiovasc Diagn. 1980;6(1):7–16. doi: 10.1002/ccd.1810060103. [DOI] [PubMed] [Google Scholar]
- Chen W., Gibson D. Relation of isovolumic relaxation to left ventricular wall movement in man. Br Heart J. 1979 Jul;42(1):51–56. doi: 10.1136/hrt.42.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton P. D., Bulawa W. F., Klausner S. C., Urie P. M., Marshall H. W., Warner H. R. The characteristic sequence for the onset of contraction in the normal human left ventricle. Circulation. 1979 Apr;59(4):671–679. doi: 10.1161/01.cir.59.4.671. [DOI] [PubMed] [Google Scholar]
- Cronin R., Armour J. A., Randall W. C. Function of the in-situ papillary muscle in the canine left ventricle. Circ Res. 1969 Jul;25(1):67–75. doi: 10.1161/01.res.25.1.67. [DOI] [PubMed] [Google Scholar]
- DODGE H. T., SANDLER H., BALLEW D. W., LORD J. D., Jr The use of biplane angiocardigraphy for the measurement of left ventricular volume in man. Am Heart J. 1960 Nov;60:762–776. doi: 10.1016/0002-8703(60)90359-8. [DOI] [PubMed] [Google Scholar]
- Durrer D., van Dam R. T., Freud G. E., Janse M. J., Meijler F. L., Arzbaecher R. C. Total excitation of the isolated human heart. Circulation. 1970 Jun;41(6):899–912. doi: 10.1161/01.cir.41.6.899. [DOI] [PubMed] [Google Scholar]
- Gibson D. G., Brown D. J. Continuous assessment of left ventricular shape in man. Br Heart J. 1975 Sep;37(9):904–910. doi: 10.1136/hrt.37.9.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. G., Brown D. J. Measurement of peak rates of left ventricular wall movement in man. Comparison of echocardiography with angiography. Br Heart J. 1975 Jul;37(7):677–683. doi: 10.1136/hrt.37.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. G., Doran J. H., Traill T. A., Brown D. J. Abnormal left ventricular wall movement during early systole in patients with angina pectoris. Br Heart J. 1978 Jul;40(7):758–766. doi: 10.1136/hrt.40.7.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. G., Greenbaum R., Marier D. L., Brown D. J. Clinical significance of early diastolic changes in left ventricular wall thickness. Eur Heart J. 1980;Suppl A:157–163. doi: 10.1093/eurheartj/1.suppl_1.157. [DOI] [PubMed] [Google Scholar]
- Gibson D. G., Prewitt T. A., Brown D. J. Analysis of left ventricular wall movement during isovolumic relaxation and its relation to coronary artery disease. Br Heart J. 1976 Oct;38(10):1010–1019. doi: 10.1136/hrt.38.10.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. G., Traill T. A., Brown D. J. Changes in left ventricular free wall thickness in patients with ischaemic heart disease. Br Heart J. 1977 Dec;39(12):1312–1318. doi: 10.1136/hrt.39.12.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenbaum R. A., Gibson D. G. Regional non-uniformity of left ventricular wall movement in man. Br Heart J. 1981 Jan;45(1):29–34. doi: 10.1136/hrt.45.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenbaum R. A., Ho S. Y., Gibson D. G., Becker A. E., Anderson R. H. Left ventricular fibre architecture in man. Br Heart J. 1981 Mar;45(3):248–263. doi: 10.1136/hrt.45.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammermeister K. E., Brooks R. C., Warbasse J. R. The rate of change of left ventricular volume in man. I. Validation and peak systolic ejection rate in health and disease. Circulation. 1974 Apr;49(4):729–738. doi: 10.1161/01.cir.49.4.729. [DOI] [PubMed] [Google Scholar]
- Hammermeister K. E., Caeiro T., Crespo E., Palmero H., Gibson D. G. Left ventricular wall motion in patients with Chagas's disease. Br Heart J. 1984 Jan;51(1):70–76. doi: 10.1136/hrt.51.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris L. D., Clayton P. D., Marshall H. W., Warner H. R. A technique for the detection of asynergistic motion in the left ventricle. Comput Biomed Res. 1974 Aug;7(4):380–394. doi: 10.1016/0010-4809(74)90014-7. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Bouchard R. J., Gault J. H. Dimensional changes of the human left ventricle prior to aortic valve opening. A cineangiographic study in patients with and without left heart disease. Circulation. 1971 Sep;44(3):312–322. doi: 10.1161/01.cir.44.3.312. [DOI] [PubMed] [Google Scholar]
- Keith A. An Account of the Structures concerned in the Production of the Jugular Pulse. J Anat Physiol. 1907 Oct;42(Pt 1):1–25. [PMC free article] [PubMed] [Google Scholar]
- Klausner S. C., Blair T. J., Bulawa W. F., Jeppson G. M., Jensen R. L., Clayton P. D. Quantitative analysis of segmental wall motion throughout systole and diastole in the normal human left ventricle. Circulation. 1982 Mar;65(3):580–590. doi: 10.1161/01.cir.65.3.580. [DOI] [PubMed] [Google Scholar]
- Lewis B. S., Lewis N., Sapoznikov D., Gotsman M. S. Isovolumic relaxation period in man. Am Heart J. 1980 Oct;100(4):490–499. doi: 10.1016/0002-8703(80)90661-4. [DOI] [PubMed] [Google Scholar]
- Marier D. L., Gibson D. G. Limitations of two frame method for displaying regional left ventricular wall motion in man. Br Heart J. 1980 Nov;44(5):555–559. doi: 10.1136/hrt.44.5.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUSHMER R. F. INITIAL VENTRICULAR IMPULSE. A POTENTIAL KEY TO CARDIAC EVALUATION. Circulation. 1964 Feb;29:268–283. doi: 10.1161/01.cir.29.2.268. [DOI] [PubMed] [Google Scholar]
- Ruttley M. S., Adams D. F., Cohn P. F., Abrams H. L. Shape and volume changes during "isovolumetric relaxation" in normal and asynergic ventricles. Circulation. 1974 Aug;50(2):306–316. doi: 10.1161/01.cir.50.2.306. [DOI] [PubMed] [Google Scholar]
- SPENCER M. P., GREISS F. C. Dynamics of ventricular ejection. Circ Res. 1962 Mar;10:274–279. doi: 10.1161/01.res.10.3.274. [DOI] [PubMed] [Google Scholar]
- Sniderman A. D., Marpole D., Fallen E. L. Regional contraction patterns in the normal and ischemic left ventricle in man. Am J Cardiol. 1973 Apr;31(4):484–489. doi: 10.1016/0002-9149(73)90299-3. [DOI] [PubMed] [Google Scholar]
- Wilson C. S., Krueger S., Forker A. D., Weaver W. F. Correlation between segmental early relaxation of the left ventricular wall and coronary occlusive disease. Am Heart J. 1975 Apr;89(4):474–479. doi: 10.1016/0002-8703(75)90154-4. [DOI] [PubMed] [Google Scholar]
