Skip to main content
The Western Journal of Medicine logoLink to The Western Journal of Medicine
. 1976 Dec;125(6):434–451.

Neurochemistry and Behavior in Man

Gilbert S Omenn 1
PMCID: PMC1237392  PMID: 12619

Abstract

The distribution and functions of certain neurotransmitter substances seem to correlate with clinical, anatomical and physiological evidence about the mediation of normal and abnormal behaviors in man, though much remains to be learned. The biosynthetic and metabolic pathways, receptors and reuptake mechanisms, and relationships to cyclic nucleotides for several major neurotransmitters are characterized, as well as the specific actions of many behavior-modifying drugs employed clinically. Experimental systems, including nerve cells in culture, permit tests of molecular actions inferred from biochemical and neurophysiological analyses in intact brain. This selective review emphasizes advances in neurochemistry which provide a context for current and future research on neurological and psychiatric disorders encountered in clinical practice.

Full text

PDF
434

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramsky O., Aharonov A., Teitelbaum D., Fuchs S. Myasthenia gravis and acetylcholine receptor. Effect of steroids in clinical course and cellular immune response to acetylcholine receptor. Arch Neurol. 1975 Oct;32(10):684–687. doi: 10.1001/archneur.1975.00490520054008. [DOI] [PubMed] [Google Scholar]
  2. Aharonov A., Tarrab-Hazdai R., Abramsky O., Fuchs S. Immunological relationship between acetylcholine receptor and thymus: a possible significance in myasthenia gravis. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1456–1459. doi: 10.1073/pnas.72.4.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angrist B. M., Gershon S. The phenomenology of experimentally induced amphetamine psychosis--preliminary observations. Biol Psychiatry. 1970 Apr;2(2):95–107. [PubMed] [Google Scholar]
  4. Axelrod J. Noradrenaline: fate and control of its biosynthesis. Science. 1971 Aug 13;173(3997):598–606. doi: 10.1126/science.173.3997.598. [DOI] [PubMed] [Google Scholar]
  5. Bennett G. S. Immunologic and electrophoretic identity between nervous system-specific proteins antigen alpha and 14-3-2. Brain Res. 1974 Mar 22;68(2):365–369. doi: 10.1016/0006-8993(74)90406-5. [DOI] [PubMed] [Google Scholar]
  6. Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
  7. Bird E. D., Iversen L. L. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain. 1974 Sep;97(3):457–472. doi: 10.1093/brain/97.1.457. [DOI] [PubMed] [Google Scholar]
  8. Bloom F. E., Hoffer B. J., Siggins G. R., Barker J. L., Nicoll R. A. Effects of serotonin on central neurons: microiontophoretic administration. Fed Proc. 1972 Jan-Feb;31(1):97–106. [PubMed] [Google Scholar]
  9. Bunney B. S., Walters J. R., Roth R. H., Aghajanian G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973 Jun;185(3):560–571. [PubMed] [Google Scholar]
  10. Bunney W. E., Jr, Davis J. M. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry. 1965 Dec;13(6):483–494. doi: 10.1001/archpsyc.1965.01730060001001. [DOI] [PubMed] [Google Scholar]
  11. CARLSSON A., LINDQVIST M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. Acta Pharmacol Toxicol (Copenh) 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
  12. Calissano P., Moore B. W., Friesen A. Effect of calcium ion on S-100, a protein of the nervous system. Biochemistry. 1969 Nov;8(11):4318–4326. doi: 10.1021/bi00839a015. [DOI] [PubMed] [Google Scholar]
  13. Chang M. M., Leeman S. E. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem. 1970 Sep 25;245(18):4784–4790. [PubMed] [Google Scholar]
  14. Cicero T. J., Cowan W. M., Moore B. W., Suntzeff V. The cellular localization of the two brain specific proteins, S-100 and 14-3-2. Brain Res. 1970 Feb 17;18(1):25–34. doi: 10.1016/0006-8993(70)90454-3. [DOI] [PubMed] [Google Scholar]
  15. Cicero T. J., Ferrendelli J. A., Suntzeff V., Moore B. W. Regional changes in CNS levels of the S-100 and 14-3-2 proteins during development and aging of the mouse. J Neurochem. 1972 Sep;19(9):2119–2125. doi: 10.1111/j.1471-4159.1972.tb05121.x. [DOI] [PubMed] [Google Scholar]
  16. Cohen P. T., Omenn G. S., Motulsky A. G., Chen S. H., Giblett E. R. Restricted variation in the glycolytic enzymes of human brain and erythrocytes. Nat New Biol. 1973 Feb 21;241(112):229–233. doi: 10.1038/newbio241229a0. [DOI] [PubMed] [Google Scholar]
  17. Cohn C. K., Dunner D. L., Axelrod J. Reduced catechol-O-methyltransferase activity in red blood cells of women with primary affective disorder. Science. 1970 Dec 18;170(3964):1323–1324. doi: 10.1126/science.170.3964.1323. [DOI] [PubMed] [Google Scholar]
  18. Collier H. O., Roy A. C. Hypothesis: Inhibition of E prostaglandin-sensitive adenyl cyclase as the mechanism of morphine analgesia. Prostaglandins. 1974 Sep 10;7(5):361–376. doi: 10.1016/0090-6980(74)90100-2. [DOI] [PubMed] [Google Scholar]
  19. Collins G. G., Sandler M. Human blood platelet monoamine oxidase. Biochem Pharmacol. 1971 Feb;20(2):289–296. doi: 10.1016/0006-2952(71)90063-3. [DOI] [PubMed] [Google Scholar]
  20. Dahlström A., Häggendal J. Axonal transport of amine storage granules in sympathetic adrenergic neurons. Adv Biochem Psychopharmacol. 1970;2:65–93. [PubMed] [Google Scholar]
  21. Dunner D. L., Cohn C. K., Gershon E. S., Goodwin F. D. Differential catechol-O-methyltransferase activity in unipolar and bipolar affective illness. Arch Gen Psychiatry. 1971 Oct;25(4):348–353. doi: 10.1001/archpsyc.1971.01750160060011. [DOI] [PubMed] [Google Scholar]
  22. Edvinsson L. Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow. Acta Physiol Scand Suppl. 1975;427:1–35. [PubMed] [Google Scholar]
  23. Enna S. J., Snyder S. H. A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue. J Neurochem. 1976 Jan;26(1):221–224. doi: 10.1111/j.1471-4159.1976.tb04465.x. [DOI] [PubMed] [Google Scholar]
  24. FRIEDHOFF A. J., VAN WINKLE E. The characteristics of an amine found in urine of schizophrenic patients. J Nerv Ment Dis. 1962 Dec;135:550–555. doi: 10.1097/00005053-196212000-00008. [DOI] [PubMed] [Google Scholar]
  25. Fahn S., Côté L. J. Regional distribution of gamma-aminobutyric acid (GABA) in brain of the rhesus monkey. J Neurochem. 1968 Mar;15(3):209–213. doi: 10.1111/j.1471-4159.1968.tb06198.x. [DOI] [PubMed] [Google Scholar]
  26. Fambrough D. M., Drachman D. B., Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973 Oct 19;182(4109):293–295. doi: 10.1126/science.182.4109.293. [DOI] [PubMed] [Google Scholar]
  27. Goldstein M., Freedman L. S., Ebstein R. P., Park D. H., Kashimoto T. Human serum dopamine-beta-hydroxylase: relationship to sympathetic activity in physiological and pathological states. Adv Biochem Psychopharmacol. 1974;12(0):105–119. [PubMed] [Google Scholar]
  28. Goodwin F. K., Murphy D. L., Brodie H. K., Bunney W. E., Jr Levodopa: alterations in behavior. Clin Pharmacol Ther. 1971 Mar-Apr;12(2):383–396. doi: 10.1002/cpt1971122part2383. [DOI] [PubMed] [Google Scholar]
  29. Greengard P., McAfee D. A., Kebabian J. W. On the mechanism of action of cyclic AMP and its role in synaptic transmission. Adv Cyclic Nucleotide Res. 1972;1:337–355. [PubMed] [Google Scholar]
  30. Grouse L., Omenn G. A., McCarthy B. J. Studies by DNA-RNA hybridization of transcriptional diversity in human brain. J Neurochem. 1973 Apr;20(4):1063–1073. doi: 10.1111/j.1471-4159.1973.tb00077.x. [DOI] [PubMed] [Google Scholar]
  31. Groves P. M., Wilson C. J., Young S. J., Rebec G. V. Self-inhibition by dopaminergic neurons. Science. 1975 Nov 7;190(4214):522–528. doi: 10.1126/science.242074. [DOI] [PubMed] [Google Scholar]
  32. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hoffer B. J., Siggins G. R., Oliver A. P., Bloom F. E. Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther. 1973 Mar;184(3):553–569. [PubMed] [Google Scholar]
  34. Hoffer B. J., Siggins G. R., Oliver A. P., Bloom F. E. Cyclic AMP-mediated adrenergic synapses to cerebellar Purkinje cells. Adv Cyclic Nucleotide Res. 1972;1:411–423. [PubMed] [Google Scholar]
  35. Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev. 1966 Jun;18(2):925–964. [PubMed] [Google Scholar]
  36. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  37. Hydén H., Lange P. W. Brain-cell protein synthesis specifically related to learning. Proc Natl Acad Sci U S A. 1970 Apr;65(4):898–904. doi: 10.1073/pnas.65.4.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hydén H., McEwen B. A glial protein specific for the nervous system. Proc Natl Acad Sci U S A. 1966 Feb;55(2):354–358. doi: 10.1073/pnas.55.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Iversen L. L. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol. 1971 Apr;41(4):571–591. doi: 10.1111/j.1476-5381.1971.tb07066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Johnson J. L. Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res. 1972 Feb 11;37(1):1–19. doi: 10.1016/0006-8993(72)90343-5. [DOI] [PubMed] [Google Scholar]
  41. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307. doi: 10.1007/3-540-05462-6_2. [DOI] [PubMed] [Google Scholar]
  42. Kakiuchi S., Rall T. W. The influence of chemical agents on the accumulation of adenosine 3',5'-Phosphate in slices of rabbit cerebellum. Mol Pharmacol. 1968 Jul;4(4):367–378. [PubMed] [Google Scholar]
  43. Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the "dopamine receptor". Proc Natl Acad Sci U S A. 1972 Aug;69(8):2145–2149. doi: 10.1073/pnas.69.8.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Klee W. A., Nirenberg M. A neuroblastoma times glioma hybrid cell line with morphine receptors. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3474–3477. doi: 10.1073/pnas.71.9.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Korf J., Bunney B. S., Aghajanian G. K. Noradrenergic neurons: morphine inhibition of spontaneous activity. Eur J Pharmacol. 1974 Feb;25(2):165–169. doi: 10.1016/0014-2999(74)90045-4. [DOI] [PubMed] [Google Scholar]
  46. Kuhar M. J., Pert C. B., Snyder S. H. Regional distribution of opiate receptor binding in monkey and human brain. Nature. 1973 Oct 26;245(5426):447–450. doi: 10.1038/245447a0. [DOI] [PubMed] [Google Scholar]
  47. Lapin I. P., Oxenkrug G. F. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet. 1969 Jan 18;1(7586):132–136. doi: 10.1016/s0140-6736(69)91140-4. [DOI] [PubMed] [Google Scholar]
  48. Levitt M., Mendlewicz J. A genetic study of plasma dopamine beta-hydroxylase in affective disorder. Mod Probl Pharmacopsychiatry. 1975;10:89–98. doi: 10.1159/000397921. [DOI] [PubMed] [Google Scholar]
  49. Marangos P. J., Zomzely-Neurath C., York C. Determination and characterization of neuron specific protein (NSP) associated enolase activity. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1309–1316. doi: 10.1016/0006-291x(76)90339-9. [DOI] [PubMed] [Google Scholar]
  50. Markham C. H., Treciokas L. J., Diamond S. G. Parkinson's disease and levodopa. A five-year follow-up and review. West J Med. 1974 Sep;121(3):188–206. [PMC free article] [PubMed] [Google Scholar]
  51. Matsuzawa H., Nirenberg M. Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3472–3476. doi: 10.1073/pnas.72.9.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. McGeer P. L., McGeer E. G. Enzymes associated with the metabolism of catecholamines, acetylcholine and gaba in human controls and patients with Parkinson's disease and Huntington's chorea. J Neurochem. 1976 Jan;26(1):65–76. [PubMed] [Google Scholar]
  53. Meldrum B. S. Epilepsy and gamma-aminobutyric acid-mediated inhibition. Int Rev Neurobiol. 1975;17:1–36. doi: 10.1016/s0074-7742(08)60205-6. [DOI] [PubMed] [Google Scholar]
  54. Meltzer H. Y., Sachar E. J., Frantz A. G. Serum prolactin levels in unmedicated schizophrenic patients. Arch Gen Psychiatry. 1974 Oct;31(4):564–569. doi: 10.1001/archpsyc.1974.01760160102021. [DOI] [PubMed] [Google Scholar]
  55. Murphy D. L., Weiss R. Reduced monoamine oxidase activity in blood platelets from bipolar depressed patients. Am J Psychiatry. 1972 May;128(11):1351–1357. doi: 10.1176/ajp.128.11.1351. [DOI] [PubMed] [Google Scholar]
  56. Murphy D. L., Wyatt R. J. Reduced monoamine oxidase activity in blood platelets from schizophrenic patients. Nature. 1972 Jul 28;238(5361):225–226. doi: 10.1038/238225a0. [DOI] [PubMed] [Google Scholar]
  57. Musacchio J. M., Julou L., Kety S. S., Glowinski J. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1117–1119. doi: 10.1073/pnas.63.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Myers P. R., Livengood D. R., Shain W. Effect of morphine on a depolarising dopamine response. Nature. 1975 Sep 18;257(5523):238–240. doi: 10.1038/257238a0. [DOI] [PubMed] [Google Scholar]
  59. Nathanson J. A., Greengard P. Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of action of lysergic acid diethylamide. Proc Natl Acad Sci U S A. 1974 Mar;71(3):797–801. doi: 10.1073/pnas.71.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Nelson P. G. Nerve and muscle cells in culture. Physiol Rev. 1975 Jan;55(1):1–61. doi: 10.1152/physrev.1975.55.1.1. [DOI] [PubMed] [Google Scholar]
  61. OSMOND H., SMYTHIES J. Schizophrenia: a new approach. J Ment Sci. 1952 Apr;98(411):309–315. doi: 10.1192/bjp.98.411.309. [DOI] [PubMed] [Google Scholar]
  62. Omenn G. S. Inborn errors of metabolism: clues to understanding human behavioral disorders. Behav Genet. 1976 Jul;6(3):263–284. doi: 10.1007/BF01065723. [DOI] [PubMed] [Google Scholar]
  63. Omenn G. S., Motulsky A. G. Editorial: Pharmacogenetics and mental disease. Psychol Med. 1974 May;4(2):125–129. doi: 10.1017/s0033291700041945. [DOI] [PubMed] [Google Scholar]
  64. Pare C. M., Mack J. W. Differentiation of two genetically specific types of depression by the response to antidepressant drugs. J Med Genet. 1971 Sep;8(3):306–309. doi: 10.1136/jmg.8.3.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Pasternak G. W., Goodman R., Snyder S. H. An endogenous morphine-like factor in mammalian brain. Life Sci. 1975 Jun 15;16(12):1765–1769. doi: 10.1016/0024-3205(75)90270-2. [DOI] [PubMed] [Google Scholar]
  66. Pert C. B., Kuhar M. J., Snyder S. H. Autoradiograhic localization of the opiate receptor in rat brain. Life Sci. 1975 Jun 15;16(12):1849–1853. doi: 10.1016/0024-3205(75)90289-1. [DOI] [PubMed] [Google Scholar]
  67. Prasad K. N., Gilmer K. N. Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in "differentiated" cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2525–2529. doi: 10.1073/pnas.71.6.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Price D. L., Griffin J., Young A., Peck K., Stocks A. Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science. 1975 May 30;188(4191):945–947. doi: 10.1126/science.49080. [DOI] [PubMed] [Google Scholar]
  69. Randrup A., Munkvad I. Pharmacology and physiology of stereotyped behavior. J Psychiatr Res. 1974;11:1–10. doi: 10.1016/0022-3956(74)90062-4. [DOI] [PubMed] [Google Scholar]
  70. Schildkraut J. J., Kety S. S. Biogenic amines and emotion. Science. 1967 Apr 7;156(3771):21–37. doi: 10.1126/science.156.3771.21. [DOI] [PubMed] [Google Scholar]
  71. Schildkraut J. J. Neuropsychopharmacology and the affective disorders (second of three parts). N Engl J Med. 1969 Jul 31;281(5):248–255. doi: 10.1056/NEJM196907312810506. [DOI] [PubMed] [Google Scholar]
  72. Segal D. S., Kuczenski R., Mandell A. J. Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biol Psychiatry. 1974 Oct;9(2):147–159. [PubMed] [Google Scholar]
  73. Sharma S. K., Klee W. A., Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3092–3096. doi: 10.1073/pnas.72.8.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Simon E. J., Hiller J. M., Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1947–1949. doi: 10.1073/pnas.70.7.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Snyder S. H., Banerjee S. P., Yamamura H. I., Greenberg D. Drugs, neurotransmitters, and schizophrenia. Science. 1974 Jun 21;184(4143):1243–1253. doi: 10.1126/science.184.4143.1243. [DOI] [PubMed] [Google Scholar]
  76. Snyder S. H., Greenberg D., Yamumura H. I. Antischizophrenic drugs: affinity for muscarinic cholinergic receptor sites in the brain predicts extrapyramidal effects. J Psychiatr Res. 1974;11:91–95. doi: 10.1016/0022-3956(74)90078-8. [DOI] [PubMed] [Google Scholar]
  77. Snyder S. H., Pert C. B., Pasternak G. W. The opiate receptor. Ann Intern Med. 1974 Oct;81(4):534–540. doi: 10.7326/0003-4819-81-4-534. [DOI] [PubMed] [Google Scholar]
  78. Stahl W. L., Swanson P. D. Biochemical abnormalities in Huntington's chorea brains. Neurology. 1974 Sep;24(9):813–819. doi: 10.1212/wnl.24.9.813. [DOI] [PubMed] [Google Scholar]
  79. Stein L., Wise C. D. Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science. 1971 Mar 12;171(3975):1032–1036. doi: 10.1126/science.171.3975.1032. [DOI] [PubMed] [Google Scholar]
  80. Tarrab-Hazdai R., Aharonov A., Silman I., Fuchs S., Abramsky O. Experimental autoimmune myasthenia induced in monkeys by purified acetylcholine receptor. Nature. 1975 Jul 10;256(5513):128–130. doi: 10.1038/256128a0. [DOI] [PubMed] [Google Scholar]
  81. Terenius L. Characteristics of the "receptor" for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol Toxicol (Copenh) 1973;33(5):377–384. doi: 10.1111/j.1600-0773.1973.tb01539.x. [DOI] [PubMed] [Google Scholar]
  82. Terenius L., Wahlström A. Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand. 1975 May;94(1):74–81. doi: 10.1111/j.1748-1716.1975.tb05863.x. [DOI] [PubMed] [Google Scholar]
  83. Thoenen H., Tranzer J. P. The pharmacology of 6-hydroxydopamine. Annu Rev Pharmacol. 1973;13:169–180. doi: 10.1146/annurev.pa.13.040173.001125. [DOI] [PubMed] [Google Scholar]
  84. Traber J., Gullis R., Hamprecht B. Influence of opiates on the levels of adenosine 3':5'-cyclic monophosphate in neuroblastoma X glioma hybrid cells. Life Sci. 1975 Jun 15;16(12):1863–1868. doi: 10.1016/0024-3205(75)90292-1. [DOI] [PubMed] [Google Scholar]
  85. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]
  86. Walters J. R., Roth R. H., Aghajanian G. K. Dopaminergic neurons: similar biochemical and histochemical effects of gamma-hydroxybutyrate and acute lesions of the nigro-neostriatal pathway. J Pharmacol Exp Ther. 1973 Sep;186(3):630–639. [PubMed] [Google Scholar]
  87. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Weinshilboum R. M., Thoa N. B., Johnson D. G., Kopin I. J., Axelrod J. Proportional release of norepinephrine and dopamine- -hydroxylase from sympathetic nerves. Science. 1971 Dec 24;174(4016):1349–1351. doi: 10.1126/science.174.4016.1349. [DOI] [PubMed] [Google Scholar]
  89. Wise C. D., Baden M. M., Stein L. Post-mortem measurement of enzymes in human brain: evidence of a central noradrenergic deficit in schizophrenia. J Psychiatr Res. 1974;11:185–198. doi: 10.1016/0022-3956(74)90092-2. [DOI] [PubMed] [Google Scholar]
  90. Wyatt R. J., Belmaker R., Murphy D. Low platelet monoamine oxidase and vulnerability to schizophrenia. Mod Probl Pharmacopsychiatry. 1975;10:38–56. doi: 10.1159/000397918. [DOI] [PubMed] [Google Scholar]
  91. Wyatt R. J., Murphy D. L., Belmaker R., Cohen S., Donnelly C. H., Pollin W. Reduced monoamine oxidase activity in platelets: a possible genetic marker for vulnerability to schizophrenia. Science. 1973 Mar 2;179(4076):916–918. doi: 10.1126/science.179.4076.916. [DOI] [PubMed] [Google Scholar]
  92. Wyatt R. J., Schwartz M. A., Erdelyi E., Barchas J. D. Dopamine beta-hydroxylase activity in brains of chronic schizophrenic patients. Science. 1975 Jan 31;187(4174):368–370. doi: 10.1126/science.1111112. [DOI] [PubMed] [Google Scholar]
  93. Young A. B., Snyder S. H. The glycine synaptic receptor: evidence that strychnine binding is associated with the ionic conductance mechanism. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4002–4005. doi: 10.1073/pnas.71.10.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Young A. B., Zukin S. R., Snyder S. H. Interaction of benzodiazepines with central nervous glycine receptors: possible mechanism of action. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2246–2250. doi: 10.1073/pnas.71.6.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Western Journal of Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES