Abstract
Lactoferrin (Lf) is a multifunctional iron-binding glycoprotein of the transferrin family that plays a central role in host defense, particularly in protection against infection and tissue injury. Abundantly present in colostrum, secretory fluids, and neutrophil granules, Lf exerts broad-spectrum antimicrobial activity against bacteria, viruses, fungi, and parasites. These effects are mediated by iron sequestration, disruption of microbial membranes, inhibition of microbial adhesion, and interference with host–pathogen interactions. Beyond its antimicrobial functions, Lf regulates pro- and anti-inflammatory mediators and mitigates excessive inflammation. Additionally, Lf alleviates oxidative stress by scavenging reactive oxygen species and enhancing antioxidant enzyme activity. This review summarizes the current understanding of Lf’s biological functions, with a particular focus on its roles in microbial infections, immune modulation, oxidative stress regulation, and inflammation. These insights underscore the therapeutic promise of Lf as a natural, multifunctional agent for managing infectious and inflammatory diseases and lay the groundwork for its clinical application in immune-related disorders.
Keywords: lactoferrin, infection, antimicrobial defense, inflammation, oxidative stress, cytokine
1. Introduction
Lactoferrin (Lf) is an iron-binding glycoprotein that shows a high degree of sequence homology across species, with approximately 78% of the human Lf sequence being identical to that of bovine Lf [1]. It is present in various secretory fluids, including milk, saliva, and tears, as well as secondary granules of neutrophils [2]. In humans, Lf is most abundant in colostrum (~7 g/L), while mature milk (≥28 days lactation) contains around 2 g/L [3,4].
Human Lf consists of approximately 700 amino acids, has a molecular weight of ~80 kDa, and is folded into two globular lobes designated the N- and C-lobes [5,6,7,8]. The N-lobe spans amino acids 1–332, and the C-lobe includes amino acids 344–703, which are connected by a flexible α-helix linker between amino acids 333 and 343. There are three isoforms of Lf: Lf-α is the iron-binding isoform, whereas Lf-β and -γ have ribonuclease activity, although they do not bind iron [7,9]. Each lobe of Lf can bind one ferric iron (Fe3+), allowing the molecule to carry up to two iron atoms. Based on iron saturation, Lf exists as hololactoferrin (Holo-Lf, >85% iron saturation) or apolactoferrin (Apo-Lf, <5% iron saturation). The natural (native) Lf typically shows 10−20% iron saturation [10,11,12]. In addition to Fe3+ and Fe2+, Lf can also bind other metal ions, including Cu2+, Mn2+, and Zn2+ [13]. Apo-Lf adopts an open conformation, while Holo-Lf has a closed structure that confers greater resistance to proteolysis [5]. These structural differences contribute to distinct functional properties (Figure 1) (Table 1). Although Holo-Lf is more stable, Apo-Lf exhibits stronger antimicrobial and immunomodulatory activities, largely due to its ability to sequester iron from the environment, thereby depriving microbes of essential nutrients. Apo-Lf also demonstrates superior antioxidant activity compared to Holo-Lf [14].
Figure 1.
The structure and related functions of human lactoferrin. Structure visualization of lactoferrin (PDB: 1B0L) generated using Mol * (RCSB PDB, https://www.rcsb.org).
Table 1.
Function of Apo- and Holo-lactoferrin.
| Function | Apo-Lf (Iron-Free) | Holo-Lf (Iron-Bound) | Ref. |
|---|---|---|---|
| Iron scavenging | High capacity to bind iron (good at chelating iron from the environment) | Cannot bind more iron (saturated) | [15,16,17,18,19,20,21,22,23,24,25] |
| Interaction with bacteria | Disrupt bacterial membranes and inhibit growth | Less effective | [18,26,27] |
| Antimicrobial activity | Stronger: depriving pathogens of the iron they need to grow | Weaker: no longer chelates iron | [16,17,18,21,22,26] |
| Immunomodulation | More potent in anti-inflammatory effects | Moderate to weak | [25,28] |
| Stability | Less stable (more prone to degrade in acidic environments) | More stable due to an iron-induced conformational change | [20,29,30,31,32,33] |
Lf plays diverse and essential biological roles, including facilitating iron absorption and exerting antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory effects [34,35,36]. These functions are mediated through interactions with a variety of receptors, such as low-density lipoprotein-related protein-1 (LRP-1/CD91/apoE receptor), chylomicron remnant receptor, intelectin-1 (omentin-1), nucleolin, toll-like receptor (TLR)2, TLR4, CXCR4, CD14, SD206, heparan sulfate proteoglycans (HSPGs), and interleukin (IL)-1 [37]. The expression of Lf receptors varies by tissue and cell type [38]. LRP-1 is expressed on monocytes, macrophages, hepatocytes, and endothelial cells, where it mediates the endocytosis of Lf, clears Lf-bound complexes, and modulates inflammatory responses [39]. Nucleolin is expressed on the surface of certain cancer cells and immune cells, where it facilitates Lf internalization. IL-1 receptors, found on intestinal epithelial cells, adipose tissue, and immune cells, promote Lf uptake, iron absorption, and contribute to the immune defense mechanism.
There is extensive evidence supporting Lf’s multifunctional roles in antimicrobial function, immune regulation, and oxidative stress mitigation. Moreover, Lf demonstrates therapeutic potential across a range of infectious and inflammatory conditions. However, a comprehensive understanding of how these diverse biological functions are linked and can be effectively leveraged for clinical application remains limited. This review aims to provide an integrated overview of Lf’s biological functions and to explore its potential as a therapeutic agent. To this end, we outline key microbial species inhibited by Lf and cytokines modulated by its activity, offering a valuable reference to inform future research and the development of Lf-based therapeutic strategies.
2. Lf Release from Neutrophils
Lf is synthesized by granular epithelial cells in exocrine fluids and by neutrophils. In neutrophils, Lf is stored in specialized secondary (specific) granules, which are formed during neutrophil maturation in the bone marrow [38]. Upon activation by bacterial products (e.g., lipopolysaccharide; LPS), immune complexes, chemokines, or cytokines, neutrophils initiate degranulation. The granules migrate to and fuse with either the plasma membrane or phagosomes, releasing their contents, including Lf, into the extracellular space or phagosome. Once released, Lf performs key antimicrobial functions. It sequesters iron to inhibit microbial growth, disrupts microbial membranes, and modulates immune responses by reducing excessive inflammation. Therefore, neutrophil dysfunction or impaired degranulation may lead to reduced Lf release and compromised host defense. Under normal conditions, blood levels of Lf are low (200–500 µg/L), but they can rise significantly, to as much as 200 mg/L, during infections and inflammatory responses, reflecting increased neutrophil numbers and degranulation [2,38,40,41,42,43,44]. Notably, a single million human neutrophils can release approximately 15 µg of Lf [38]. Accordingly, elevated Lf levels in body fluids can serve as biomarkers of inflammation, particularly in diseases such as inflammatory bowel disease.
3. Antimicrobial Activity
The antimicrobial activity of Lf has been extensively documented against a broad spectrum of pathogens, including bacteria, viruses, fungi, yeasts, and parasites [42,45]. Lf exerts its antimicrobial effects through multiple mechanisms: it binds iron with high affinity, depriving microbes of this essential nutrient; disrupts microbial membranes; and inhibits bacterial adhesion and biofilm formation. Additionally, Lf interferes with microbe–host cell interactions by binding to microbial components or host cell receptors, thereby blocking pathogen entry and colonization. Beyond its direct antimicrobial actions, Lf enhances the host immune response by stimulating immune cells and promoting cytokine production. Due to its broad-spectrum activity, low toxicity, and immunomodulatory properties, Lf is considered as a promising therapeutic candidate, particularly in the context of antibiotic resistance, adverse drug reactions, and the need for immune-supportive interventions.
3.1. Antibacterial Activity
The antibacterial activity of Lf is primarily attributed to its ability to sequester free iron, depriving bacteria of this essential element for growth and metabolism. In Gram-negative bacteria, Lf interacts with bacterial LPS on the outer membrane, disrupting membrane integrity and competing with CD14 for LPS binding, thereby preventing downstream activation of TLRs on immune cells [46]. In Gram-positive bacteria, Lf’s cationic nature enables it to bind to anionic surface molecules such as lipoteichoic acid, reducing surface charge and destabilizing the membrane. This disruption facilitates lysozyme access to the underlying peptidoglycan, enhancing its enzymatic effect [7,47]. Additionally, Lf may exert antibacterial effects through the generation of peroxides catalyzed by Lf-bound iron ions, leading to altered membrane permeability and bacterial cell lysis [46,48,49,50,51,52].
Lf demonstrated antibacterial activity against a wide range of Gram-negative bacteria, including [53,54], Enterobacter spp., Escherichia coli, Haemophilus influenzae, Helicobacter felis, Helicobacter pylori, Klebsiella pneumoniae, Porphyromonas gingivalis, Pseudomonas aeruginosa, Salmonella, and Yersinia spp. [55,56,57,58,59,60,61,62,63,64,65] (Table 2), as well as Gram-positive bacteria such as Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus [66,67] (Table 3). Lf inhibits bacterial growth by sequestering iron, a critical element for microbial metabolism, and by interacting with key bacterial components such as protein A, lysozyme, and DNA [68]. These interactions disrupt essential cellular functions and inhibit biofilm formation, particularly in P. aeruginosa and S. aureus infections, which are known for their antibiotic resistance and chronicity [21]. Moreover, Lf has been shown to enhance the efficacy of various antibiotics, including gentamicin, levofloxacin, rifampicin, clarithromycin, and clindamycin, demonstrating effects that could lower required drug doses and reduce adverse effects [61,69]. These properties position Lf as a promising adjunctive agent in the management of multidrug-resistant bacterial infections.
Table 2.
Effect of lactoferrin on Gram-negative bacteria.
| Bacteria | Host | Function and Mechanism | Ref. |
|---|---|---|---|
| Chlamydophila psittaci | in vitro | Inhibit attachment and entry | [70] |
| Chlamydia trachomatis | in vitro | Inhibit entry Reduce IL-6 and IL-8 |
[53,54] |
| Enterobacter sakazakii | in vitro | Inhibit growth | [55] |
| Escherichia coli | in vitro | Inhibit adherence | [57] |
| in vitro | Impair type III secretory system | [56] | |
| in vitro | Inhibit growth | [67] | |
| in vitro | Inhibit biofilm formation | [66] | |
| Haemophilus influenzae | in vitro | Inactivate colonization factors | [58] |
| Helicobacter felis | Mouse | Reverse gastritis, infection rate, and gastric surface hydrophobicity changes | [59] |
| Helicobacter pylori | Mouse | Inhibit gastric colonization and inflammation | [71] |
| Mouse | Reduce bacterial load Inhibit TNF-α, IFN-γ, IL-17, COX-2 Increase IL-4, IL-10, IL-12 Regulate blood parameters Alleviate histopathological changes |
[72] | |
| in vitro | Inhibit growth | [73] | |
| Klebsiella pneumoniae | in vitro | Enhance sensitivity to antibiotics | [61] |
| Porphyromonas gingivalis | Human | Inhibit growth | [62] |
| Pseudomonas aeruginosa | in vitro | Inhibit biofilm formation | [63] |
| Mouse | Decrease weight loss Inhibit growth Decrease cell infiltration Decrease MCP-1 and MIP-1 |
[74] | |
| Salmonella enterica s erovar Typhimurium | Mouse | Decrease bacterial load in the liver and spleen Reduce hepatomegaly and splenomegaly |
[64] |
| Mouse | Increase survival Decrease weight loss Inhibit infection |
[75] | |
| Mouse | Increase survival Inhibit infection Increase IgA and IgG |
[76] | |
| Yersinia | in vitro | Inhibit entry | [65] |
Table 3.
Effect of lactoferrin on Gram-positive bacteria.
| Bacteria | Host | Function and Mechanism | Ref. |
|---|---|---|---|
| Bacillus cereus | in vitro | Inhibit growth | [77,78] |
| Clostridium difficile | in vitro | Delay growth Prevent toxin production |
[79] |
| Listeria monocytogenes | in vitro | Inhibit biofilm formation | [66] |
| Staphylococcus aureus | Mouse | Decrease IL-17 and IL-1β | [80] |
| in vitro | Increase IL-1β, IFN-γ, IL-2, Reduce IL-6, IL-1β, IL-12p40 |
[80] | |
| Mouse | Inhibit kidney infection | [81] | |
| Mouse | Increase the spleen cell number Increase IFN-γ and TNF-α Reduce IL-5 and IL-10 |
[82] | |
| in vitro | Decrease cell viability | [83] | |
| in vitro | Inhibit growth | [67] | |
| Streptococcus mutans | in vitro | Inhibit aggregation and biofilm | [84] |
| Mouse | Reduce cavity development | [85] | |
| in vitro | Inhibit infection | [85] |
3.2. Antiviral Activity
Lf demonstrated broad-spectrum antiviral activity, as comprehensively reviewed by Eker et al. [86]. It exerts inhibitory effects against a wide array of DNA and RNA viruses, including adenoviruses, cytomegalovirus, enteroviruses, echovirus, Japanese encephalitis virus, hepatitis C virus (HCV), herpes simplex virus, influenza virus, human cytomegalovirus, human immunodeficiency virus (HIV), human norovirus, human respiratory syncytial virus, papillomavirus, poliovirus, rotavirus, Zika virus, and most notably SARS-CoV-2 [87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] (Table 4).
Table 4.
Effect of lactoferrin on viruses.
| Viruses | Host | Function and Mechanism | Ref. |
|---|---|---|---|
| Adenovirus | in vitro | Inhibit viral antigen synthesis | [102] |
| in vitro | Promote binding and infection | [103,104] | |
| Avian influenza | Mouse | Decrease weight loss Decrease IL-17, IL-22, TNF-α |
[105] |
| Cytomegalovirus | Mouse | Reduce infection | [93] |
| Enterovirus E | in vitro | Inhibit virus replication | [106] |
| Enterovirus 71 | Mouse | Increase survival | [107] |
| in vitro | Inhibit infection Decrease IL-6 Increase IFN-α |
[107] | |
| in vitro | Inhibit infection | [108] | |
| Hepatitis B virus (HBV) |
in vitro | Inhibit virus binding Inhibit infection |
[109,110] |
| in vitro | Inhibit growth | [111] | |
| Hepatitis C virus (HCV) |
in vitro | Inhibit entry | [112,113,114] |
| Inhibit virus replication | [114] | ||
| in vitro | Inhibit virus replication Inhibit viral ATPase/helicase |
[115] | |
| in vitro | Inhibit entry Inhibit virus replication |
[112,116] | |
| Human | Decrease serum ALT Decrease HCV RNA level |
[117] | |
| Herpes simplex virus | in vitro | Inhibit infection | [118] |
| Influenza | in vitro | Reduce infection | [119] |
| in vitro | Suppress viral antigen synthesis Reduce infection |
[120] | |
| in vitro | Inhibit cell apoptosis Inhibit DNA fragmentation Reduce caspase-3 activity |
[121] | |
| in vitro | Inhibit virus replication | [122] | |
| in vitro | Inhibit infection | [123] | |
| Mayaro virus | in vitro | Inhibit infection Inhibit entry |
[124] |
| Rhinovirus B-14 | in vitro | Reduce virus binding | [125] |
| Rotavirus | in vitro | Inhibit viral cytopathic effect | [60,126] |
| SARS-CoV-2 | in vitro | Inhibit infection and replication Reduce thymic stromal lymphopoietin Upregulate TGF-β1 |
[127] |
| in vitro | Reduce virus binding Obscure host cell receptors |
[128] | |
| in vitro | Reduce virus binding | [98] | |
| Rat | Decrease TNF-α, IL-4, IL-1β, IL-6, IL-10 Increase CD4 cells Alleviate pulmonary fibrosis |
[99] | |
| in vitro | Increase virus neutralization Inhibit virus propagation |
[99] | |
| in vitro | Decrease virus infection | [100] | |
| Hamster | Decrease virus infection Alleviate pulmonary histopathological changes |
[100] | |
| in vitro | Decrease virus infection Inhibit entry |
[101] | |
| Mouse | Decrease IFN-γ Increase IL-1β, IL-2, IL-6, GM-CSF Increase TLR-4 and TLR-9 |
[129] | |
| in vitro | Decrease NK and NKT cells Activate CD4 cells Decrease programmed death of CD4 and CD8 cells Increase CCL5 |
[129] | |
| Toscana virus | in vitro | Inhibit viral cytopathic effect | [130] |
Mechanistically, Lf binds directly to viral particles or to host cell surface receptors, including viral hemagglutinin, HSPGs, and angiotensin-converting enzyme 2, thereby preventing viral attachment, fusion, and entry [131,132,133]. This receptor-binding inhibition is a critical first step in disrupting the infection cycle, as Lf blocks the initial interaction between virus and host cells [134]. In addition, Lf interferes with later stages of viral infection, such as viral internalization (e.g., poliovirus type 1) and replication (e.g., rotavirus, HCV) [60,114,135]. Interestingly, while most studies report antiviral effects, some findings suggest that Lf may enhance adenovirus infection by promoting viral attachment to epithelial cells, highlighting the virus-specific nature of Lf activity [104]. The authors proposed that Lf facilitates adenovirus infection by binding to the coxsackievirus and adenovirus receptor (CAR), which allows entry into target cells. However, CAR is rarely expressed on the apical side of polarized cells, which initiates infection. Therefore, it seems that adenovirus uses Lf as a bridge to attach to host cells. Moreover, Lf has been shown to act synergistically with established antiviral agents, including acyclovir, ribavirin, and zidovudine, enhancing their therapeutic efficacy [69,112].
Since the emergence of COVID-19, Lf has been extensively investigated for its role in SARS-CoV-2 inhibition. Animal studies and clinical studies reported shorter symptom duration, improved recovery rates, and reduced viral loads in SARS-CoV-2 infection supplemented with Lf [99,100,101]. Notably, reduced Lf levels have been observed in the milk from mothers infected with SARS-CoV-2 [136], suggesting a potential correlation with host defense.
3.3. Antifungal Activity and Antiparasitic Activity
Lf exhibits notable antifungal activity through multiple mechanisms, including iron sequestration, disruption of fungal membrane integrity and increased membrane permeability, and the induction of apoptosis [137,138]. Lf has been shown to inhibit the growth of several pathogenic fungi, such as Aspergillus fumigatus, Candida spp., Cryptococcus neoformans, and Trichophyton mentagrophytes (Table 5). Moreover, Lf acts synergistically with conventional antifungal agents, including amphotericin B, fluconazole, and caspofungin [139,140]. The bioactive peptide derived from Lf, lactoferricin (positively charged N-terminal 49 residues of Lf) exhibits even greater antifungal potency than the parent protein by inserting into the fungal membrane, resulting in membrane destabilization and cell death, even at low concentrations, and is particularly effective against drug-resistant strains [141].
Table 5.
Effect of lactoferrin on fungi.
| Fungi | Host | Function and Mechanism | Ref. |
|---|---|---|---|
| Aspergillus fumigatus | Human | Inhibit growth Iron deprivation |
[142] |
| in vitro | Iron deprivation | [142,143] | |
| in vitro | Prevent biofilm | [140] | |
| Candida albicans | Mouse | Inhibit growth Downregulate EGF1 |
[144] |
| Mouse | Inhibit growth Increase IL-10, TNF-α, IFN-γ, MCP-1 |
[145] | |
| Galleria mellonella | Decrease fungal burden | [140] | |
| in vitro | Iron deprivation Interact with cell surface Alter cell membrane Alter cell membrane H+ ATPase |
[137,139,146,147,148,149,150] | |
| Candida glabrata | in vitro | Interact with cell surface Alter cell membrane |
[139,148] |
| Candida guilliermondii | in vitro | [148] | |
| Candida krusei | in vitro | [147,151,152] | |
| Candida parapsilosis | in vitro | [148] | |
| Candida tropicalis | in vitro | [148] | |
| Cryptococcus gattii | in vitro | Iron deprivation | [153] |
| Cryptococcus neoformans | in vitro | Iron deprivation Alter responses to stress |
[153,154] |
| in vitro | Disrupt iron transport Inhibit growth |
[155] | |
| Galleria mellonella | Inhibit growth Interact with cell surface Reduce cell and capsule size |
[140] | |
| Saccharomyces cerevisiae | in vitro | Regulate cell death | [156] |
| in vitro | Iron deprivation | [153] | |
| Trichophyton mentagrophytes | in vitro | Inhibit growth | [152] |
| Guinea pig | Inhibit growth | [152] | |
| Guinea pig | Modulate mononuclear cell function | [157] | |
| Trichophyton spp. | in vitro | Interact with cell surface Alter cell membrane |
[158] |
Lf also possesses broad antiparasitic activity, as reviewed by Anand [159] and Zarzosa-Moreno et al. [160], and targets a range of intestinal and blood-borne protozoan parasites. Its antiparasitic mechanisms parallel those observed in antibacterial and antifungal actions, involving iron deprivation, membrane disruption, and interference with host–parasite interactions. For example, Lf binds to the membrane lipids of Entamoeba histolytica trophozoites, causing membrane disruption and parasite death [161,162]. It also inhibits the proliferation or viability of Babesia caballi, Cryptosporidium sporozoites, Entamoeba histolytica, Giardia lamblia (by blocking adherence to host epithelial cells), Leishmania spp., Plasmodium berghei, and Plasmodium falciparum, where it not only suppresses parasite growth, but also acts synergistically with antimalarial drugs [36,163,164,165,166,167,168,169,170,171,172]. In addition, Lf inhibits Toxoplasma gondii (by suppressing intracellular growth) and Trichomonas vaginalis (by blocking epithelial binding), and enhances the killing of Trypanosoma spp. [173,174,175,176,177]. Moreover, lactoferricin shows superior antiparasitic effects compared to native Lf due to its enhanced ability to penetrate and disrupt parasite membranes. These findings again highlight the therapeutic potential of both Lf and its derivatives as adjunctive and alternative treatments for fungal and parasite infections, particularly in the face of increasing drug resistance.
4. Anti-Inflammatory Activity
Lf exhibits potent anti-inflammatory properties by modulating a wide range of inflammatory responses. During microbial infection, Lf neutralizes microbial components such as LPS, thereby preventing the activation of pro-inflammatory signaling pathways. It interferes with key regulators of inflammation, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB), contributing to the resolution of inflammation and the restoration of immune homeostasis [178]. Lf also regulates the activity of various immune cells, such as neutrophils, macrophages, and dendritic cells. Its anti-inflammatory effects are further supported by its ability to suppress the production of pro-inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Owing to its ability to modulate inflammation, Lf holds therapeutic potential for treating inflammatory conditions such as sepsis, inflammatory bowel disease, neuroinflammation, and respiratory infections, as well as reducing hyperoxia-induced kidney and lung injuries [69].
4.1. Regulation of Cytokines
Lf plays a critical role in modulating the balance between pro- and anti-inflammatory cytokines, thereby promoting immune homeostasis [179,180]. Lf has been shown to downregulate the production of pro-inflammatory cytokines, such as interferon (IFN)-γ, IL-1β, IL-2, IL-6, IL-8, and TNF-α, in various cell types, including human mononuclear cells, endometrial stromal cells, THP-1, RAW 264.7, and A549 cells. In contrast, Lf upregulates anti-inflammatory cytokines, including IL-4 and IL-10. Some studies report that Lf can induce the production of IL-6, IL-8, and TNF-α [181,182,183], suggesting that Lf may act as a mild inflammatory stimulus. Nevertheless, Lf is also capable of suppressing stimulus-induced overproduction of pro-inflammatory cytokines, indicating its broader regulatory function in preventing excessive inflammation. However, the effects of Lf on certain cytokines, including IL-6, IL-10, IL-18, and TNF-α, have been inconsistent (Table 6).
Table 6.
Effect of lactoferrin on cytokine levels.
| Cytokines | Stimuli | Lf Effects | Ref. |
|---|---|---|---|
| IFN-γ | Co26Lu tumor | I | [184] |
| LPS | D | [185] | |
| Toxoplasma gondii cysts | D | [186] | |
| IL-1α | NaOH | D | [187] |
| IL-1β | No stimulus | D | [188] |
| Dextran sulfate sodium (DSS) | D | [189,190] | |
| Deoxynivalenol | D | [191] | |
| LPS | I | [192] | |
| LPS | D | [35,179,193,194] | |
| LPS + IFN-γ | D | [35] | |
| NaOH | D | [187] | |
| Thioacetamide (TAA) | D | [195] | |
| Trehalose 6,6′-dimycolate (TDM) | D | [196,197] | |
| TNF-α | D | [198] | |
| 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) | D | [199] | |
| Burkholderia cenocepacia | D | [200] | |
| Prevotella intermedia | D | [201] | |
| IL-2 | LPS | D | [179] |
| IL-4 | No stimulus | D | [202] |
| DSS | I | [190] | |
| TNBS | I | [199] | |
| IL-6 | No stimulus | I | [203,204] |
| No stimulus | D | [188] | |
| CCl4 | D | [187] | |
| DSS | D | [190] | |
| H2O2 | D | [205] | |
| LPS | I | [181,192] | |
| LPS | D | [35,185,206] | |
| LPS + IFN-γ | D | [35] | |
| TAA | D | [195] | |
| TDM | D | [197] | |
| TNF-α | D | [198] | |
| Chlamydia trachomatis | D | [54] | |
| Escherichia coli HB101(pRI203) | D | [207] | |
| Mycobacterium tuberculosis | D | [196] | |
| P. intermedia | D | [201] | |
| IL-8 (CXCL8) |
No stimulus | I | [182] |
| Deoxynivalenol | D | [191] | |
| H2O2 | D | [205] | |
| LPS | D | [35] | |
| Sepsis-induced acute lung injury | D | [208] | |
| C. trachomatis | D | [54] | |
| E. coli HB101(pRI203) | D | [207] | |
| P. intermedia | D | [201] | |
| IL-10 | No stimulus | D | [209] |
| Deoxynivalenol | I | [191] | |
| DSS | I | [190] | |
| LPS | D | [35,183,185] | |
| LPS + IFN-γ | I | [35] | |
| TAA | I | [195] | |
| TDM | I | [196] | |
| TNBS | I | [199] | |
| T. gondii cysts | I | [186] | |
| IL-11 | Zymosan | I | [210] |
| B. cenocepacia | I | [200] | |
| IL-12 | LPS | I | [183] |
| IL-18 | No stimulus | D | [188] |
| Co26Lu tumor | I | [184] | |
| T. gondii cysts | D | [186] | |
| MIF | Sepsis-induced acute lung injury | D | [208] |
| Pseudomonas aeruginosa | D | [74] | |
| TNF-α | No stimulus | I | [182,183] |
| No stimulus | D | [198,202,211] | |
| Deoxynivalenol | D | [191] | |
| DSS | D | [189,190] | |
| LPS | D | [35,179,181,192,194,212] | |
| Sepsis-induced acute lung injury | D | [208] | |
| TDM | D | [197] | |
| TNBS | D | [199] | |
| E. coli HB101(pRI203) | D | [207] | |
| M. tuberculosis | I | [196] | |
| P. intermedia | D | [201] |
D: decrease, I: increase.
Lf activates macrophages and enhances TNF-α production [182,183], whereas it suppresses TNF-α production under conditions of chronic endometritis, pregnancy, and lung cancer [198,202,211]. Moreover, Lf differentially regulates the production of cytokines, such as IL-6, IL-10, and TNF-α, depending on the timing of treatment in LPS-induced inflammatory mice [212]. These results suggest that Lf differentially regulates inflammatory cytokines in a context-dependent manner: it promotes pro-inflammatory cytokine production under physiological conditions but suppresses them in pathological or disease states.
Oral administration of Lf has been associated with significant alterations in cytokine profiles in both humans and animal models. In these studies, Lf reduced levels of pro-inflammatory cytokines, such as INF-γ, IL-6, IL-8, macrophage migration inhibitory factor (MIF), and TNF-α [185,198,208]. Concurrently, it enhanced levels of anti-inflammatory cytokines, including IL-4 and IL-10, in mice and rats [190]. Notably, in pregnant women, Lf supplementation led to a reduction in IFN-γ, IL-1α, IL-4, IL-9, IL-15, IP-10, MCP-3, and TNF-α, while increasing levels of IL-17, fibroblast growth factor-basic (FGF-basic), granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) [202].
4.2. Mitigation of Oxidative Stress
Lf demonstrates significant potential in mitigating oxidative stress across various biological systems, primarily through its ability to sequester free iron [69,213]. By binding iron, Lf limits its availability for participation in the Haber–Weiss reaction, thereby reducing the generation of free radicals. In addition to iron sequestration, Lf directly scavenges hydroxyl radicals and can undergo oxidative self-degradation to neutralize reactive species [214]. It significantly reduces the production of reactive oxygen species (ROS) induced by a variety of oxidative stimuli, including hydrogen peroxide (H2O2), LPS, prion proteins, dexamethasone, and alcohol [215,216,217,218], in different cell types, such as human neutrophils and human mesenchymal stem cells, as well as MC3T3-E1, SH-SY5Y, A549, and AML-12 [25,213,218,219,220,221]. These findings suggest that Lf may ameliorate inflammation, at least in part, by limiting ROS production. Lf can also promote ROS production under certain conditions. For example, Holo-Lf has been shown to increase ROS levels in erythrocytes by enhancing the Fenton reaction, leading to hemolysis [222]. In addition, In C. albicans, Lf induced substantial ROS accumulation, triggering an apoptosis-like response that could be alleviated by antioxidants such as menadione and N-acetylcysteine [223]. These findings suggest that the antimicrobial activity of Lf may, in some cases, be mediated through ROS generation in microbial cells.
In addition to reducing ROS directly, Lf mitigates oxidative stress by enhancing the expression and activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX) [215,224,225,226] (Table 7). Lf has been shown to dose-dependently increase GSH levels in erythrocytes and restore antioxidant enzyme activity diminished by various toxic substances. For instance, it reverses acrylamide-induced reductions in CAT, GSH, and SOD activity [224], as well as hexavalent chromium-induced suppression of CAT, GSH, and SOD in rat testicular tissues [227]. Similarly, it restores dietary deoxynivalenol-induced suppression of GPX activity in mouse testes [226], and increases GSH and DPPH levels in mouse liver and SOD activity in aged mice. Furthermore, Lf overexpression in astrocytes is associated with upregulation of antioxidant enzymes such as SOD1 and GPX4 [4,225]. Therefore, Lf mitigates oxidative stress through a dual mechanism: by directly inhibiting and scavenging ROS and by enhancing the body’s oxidant defenses.
Table 7.
Effect of lactoferrin on oxidative stress.
| Oxidative-Stress | ||||
| Oxidative Stress | Study Model | Stimuli | LF Effects | Ref. |
| Intracellular ROS | in vitro (A549) | Ragweed pollen extract (RWE), Glucose oxidase (Gox) |
D | [25] |
| in vitro (NHBE) | RWE | |||
| in vitro (U937) | Gox | D | [228] | |
| in vitro (SH-SY5Y) | PrP (106–126) | D | [216] | |
| in vitro (RBC) | D | [222] | ||
| in vitro (hMSC) | H2O2 | D | [213] | |
| in vitro (MC3T3-E1) | H2O2 | D | [220] | |
| in vivo (hippocampus) | Age | D | [229] | |
| in vitro (N2a) | Ferric ammonium citrate (FAC) |
D | [225] | |
| in vitro (AML-12) | Ethanol | D | [218] | |
| in vitro (FL83B) | Thioacetamide | D | [195] | |
| in vitro (CCD-841-CON, CCD-18co, HT29) |
Lipopolysaccharide (LPS) |
D | [230] | |
| in vitro (U937, AML-12) |
LPS, H2O2, Gox | D | [231] | |
| H2O2 | in vitro (neutrophil) | LPS | D | [219] |
| in vitro (A549) | RWE | D | [25] | |
| in vivo (BAL fluid) | ||||
| in vivo (plasma) | Dexamethasone | D | [217] | |
| in vitro (HUVEC) | H2O2 | D | [232] | |
| in vivo (serum, liver, kidney) | HgCl2 | D | [215] | |
| in vitro (U937, AML-12) |
LPS, H2O2 | D | [231] | |
| in vivo (liver, heart, muscle, brain) | LPS, H2O2 | D | [231] | |
| Nitric oxide (NO) | in vivo (liver) | Bleomycin | D | [233] |
| in vivo (liver) | LPS | D | [234] | |
| in vitro (peripheral blood, lymphocytes) | Alzheimer’s disease | D | [235] | |
| Malondialdehyde (MDA) |
in vitro (erythrocytes) | D | [236] | |
| in vivo (BAL fluid) | RWE | D | [25] | |
| in vivo (serum, liver) |
Cholesterol | D | [83] | |
| in vivo (lung) | Acute lung injury (ALI) | D | [208] | |
| in vitro (U937) | H2O2 | D | [237] | |
| in vivo (amniotic fluid) |
||||
| in vivo (hippocampus) | Age | D | [229] | |
| in vitro (HepG2) | Acrylamide | D | [224] | |
| in vivo (testis) | Deoxynivalenol | D | [226] | |
| in vivo (serum, liver, kidney) | HgCl2 | D | [215] | |
| in vitro (N2a) | FAC | D | [225] | |
| in vitro (AML-12), in vivo (liver) |
Ethanol | D | [218] | |
| in vivo (liver, kidney) |
Thioacetamide | D | [238] | |
| in vivo (liver) | Bleomycin | D | [233] | |
| in vitro (peripheral blood, lymphocytes) | Alzheimer’s disease | D | [235] | |
| in vivo (liver) | CCl4 | D | [239] | |
| in vivo (serum, longissimus muscle) | D | [240] | ||
| Aspartate Aminotransferase (AST) |
in vivo (blood) | D-galactosamine, CCl4, LPS |
D | [210] |
| in vivo (serum) | Cholesterol | D | [83] | |
| in vivo (serum, liver) |
Furosine, Pyralline, 5-Hydroxymethylfurfural |
D | [241] | |
| in vivo (serum, liver, kidney) | HgCl2 | D | [215] | |
| in vivo (serum, liver) |
Ethanol | D | [218] | |
| in vivo (serum) | Thioacetamide | D | [238] | |
| in vivo (blood) | Thioacetamide | D | [195] | |
| in vivo (serum) | HgCl2 | D | [215] | |
| in vivo (serum) | Bleomycin | D | [233] | |
| in vivo (serum) | LPS | D | [234] | |
| Alanine Aminotransferase (ALT) | in vivo (serum) | HgCl2 | D | [215] |
| in vivo (blood) | Thioacetamide | D | [195] | |
| in vivo (serum) | Bleomycin | D | [233] | |
| in vivo (liver) | High-fructose corn syrup | D | [242] | |
| NADPH oxidase (NOX2) |
in vivo (hippocampus) | Age | D | [229] |
| Antioxidants | ||||
| Antioxidants | Study model | Inhibitor | LF effects | Ref. |
| Superoxide dismutase (SOD) |
in vitro (WBC) | I | [228] | |
| in vivo (lung) | ALI | I | [208] | |
| in vivo (hippocampus) | Age | I | [229] | |
| in vitro (HepG2) | Acrylamide | I | [224] | |
| in vivo (testis) | Potassium dichromate (PDC) |
I | [227] | |
| in vivo (cortex, hippocampus) | FAC | I | [225] | |
| in vivo (liver, kidney) |
Thioacetamide | I | [238] | |
| in vivo (liver) | CCl4 | I | [239] | |
| Catalase (CAT) |
in vivo (lung) | ALI | I | [208] |
| in vitro (HepG2) | Acrylamide | I | [224] | |
| in vivo (testis) | PDC | I | [227] | |
| in vivo (serum, liver, kidney) | HgCl2 | I | [215] | |
| in vivo (liver, kidney) |
Thioacetamide | I | [238] | |
| in vivo (liver) | Thioacetamide | I | [195] | |
| in vivo (serum, longissimus muscle) | I | [240] | ||
| Glutathione reductase (GSH) |
in vitro (erythrocytes) | I | [236] | |
| in vivo (serum, liver) |
Cholesterol | I | [83] | |
| in vivo (lung) | ALI | I | [208] | |
| in vitro (HepG2) | Acrylamide | I | [224] | |
| in vivo (testis) | PDC | I | [227] | |
| in vivo (serum, liver, kidney) | HgCl2 | I | [215] | |
| in vitro (N2a) | FAC | I | [225] | |
| in vitro (AML-12) in vivo (liver) |
Ethanol | I | [218] | |
| in vivo (liver) | Bleomycin | I | [233] | |
| in vitro (peripheral blood, lymphocytes) | Alzheimer’s disease | I | [235] | |
| Glutathione peroxidase (GPX) |
in vitro (WBC) | I | [228] | |
| in vivo (lung) | ALI | I | [208] | |
| in vivo (testis) | Deoxynivalenol | I | [226] | |
| in vitro (N2a, SH-SY5Y) in vivo (cortex, hippocampus) |
FAC | I | [225] | |
| in vitro (AML-12) in vivo (liver) |
Ethanol | I | [218] | |
| in vivo (liver) | Bleomycin | I | [233] | |
| in vivo (liver) | CCl4 | I | [239] | |
| in vivo (serum, longissimus muscle) | I | [240] | ||
| Total antioxidant status (TAS) | in vivo (amniotic fluid) |
I | [237] | |
| Total antioxidant capacity (TAC) | in vivo (serum, liver, kidney) | HgCl2 | I | [215] |
| in vitro (peripheral blood, lymphocytes) | Alzheimer’s disease | I | [235] | |
D: decrease, I: increase.
5. Concluding Remarks
LF exhibits broad-spectrum antimicrobial activity and plays a critical role in modulating immune responses, thereby contributing to host defense and maintaining immune homeostasis (Figure 2). Its abundance in milk, particularly in colostrum, underscores its importance in neonatal and infant immunity, while neutrophil-derived Lf continues to contribute to immune defense throughout life. In addition to its antimicrobial properties, Lf actively facilitates the resolution of inflammation by modulating the balance between pro- and anti-inflammatory cytokines and alleviating oxidative stress (Table 8). These diverse functions make Lf a promising therapeutic candidate for the prevention and treatment of infectious and inflammatory diseases, as well as for protection against hyperoxia-induced tissue injury.
Figure 2.
Overview of lactoferrin’s main action in host defense and inflammation. Activation is shown by blue lines and inhibition by red lines.
Table 8.
Action mechanisms of lactoferrin in host defense.
| Actions | Mode of Action | Target Pathogens/Molzecules | LF Effects | Ref. | |
|---|---|---|---|---|---|
| Antimicrobial action | Iron chelation | Bacteria (G+/C−), Viruses, Fungi, Parasites | − | Inhibit growth, Prevent infection by blocking binding to host cells |
[55,56,57,58,59,63,70,71,73,75,76,77,79,80,81,82,84,85,93,102,104,105,106,107,108,110,114,115,116,118,121,126,129,130,137,139,142,143,145,146,147,148,149,150,151,152,153,154,155,156,157,158] |
| Membrane disruption | |||||
| Interaction impairment | |||||
| Immune system reaction | Signaling molecules | MAPK, NF-κB | D I |
Reduce the expression of pro-inflammatory genes | [178] |
| Cytokines | IL-4, IL-10, IL-11, IL-12, |
[35,183,185,186,190,191,195,196,199,200,202,209,210] | |||
| IFN-γ, IL-1α, IL-1β, IL-2, IL-6, IL-8, TNF-α, MIF |
D | [35,54,74,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,211,212] | |||
| Redox regulation | Oxidative stress | ROS, H2O2, NO, MDA, AST, ALT, NOX2 | D I |
Protect host cells from damage caused by excessive oxidative stress | [24,25,83,195,197,208,210,213,215,217,218,219,220,222,224,226,228,229,231,232,233,234,235,236,237,238,239,240,241,242] |
| Antioxidant activity | SOD, CAT, GSH, GPX, TAS, TAC |
[83,195,208,215,218,224,225,227,228,229,233,235,236,237,238,239,240] | |||
D: decrease, I: increase.
Clinical applications of Lf primarily focused on conditions including anemia, hepatitis C infection, type 2 diabetes, and colorectal polyps. In pregnant women, supplementation with iron-saturated bovine Lf led to increased hemoglobin and total serum iron levels while reducing IL-6 production, indicating both hematologic and anti-inflammatory benefits [203,243,244,245,246]. Moreover, the safety and effectiveness of Lf compared to ferrous sulfate treatment have been reported [247]. In patients with chronic hepatitis C, Lf administration resulted in a decrease in HCV viral load and a reduction in serum alanine transaminase levels [117,248]. Furthermore, Lf has been shown to inhibit the growth of adenomatous colorectal polyps, suggesting its potential role in colorectal cancer prevention and as an adjunctive therapy following polyp extraction [249].
Regarding safety and toxicity, Vishwanath-Deutsch et al. reviewed evidence indicating that Lf is well-tolerated and safe in both animal and human studies [250]. Animal studies showed no significant toxicity across safety or tolerability endpoints, with no observed adverse effects even at the highest tested doses. Additionally, no studies specifically identified increased immunogenicity or allergenicity associated with Lf. Furthermore, Lf is expected to enhance drug bioavailability by encapsulating therapeutic agents and protecting them from degradation. The improved bioavailability may be particularly beneficial for treating intestinal inflammatory disorders. Lf can cross biological barriers, including the blood–brain barrier and intestinal epithelium, making it a promising vehicle for drug delivery. This property is particularly advantageous for targeting neurodegenerative diseases such as Parkinson’s disease. Conjugation of therapeutic agents with Lf can improve their solubility, stability, and targeted delivery for antimicrobial, anti-inflammatory, and chemotherapeutic agents. Therefore, Lf holds promise as a carrier for drugs and bioactive molecules.
Acknowledgments
During the preparation of this manuscript, the authors used ChatGPT (GTP-4o) for text editing for language improvement. The authors have reviewed and edited the output and take full responsibility for the content of this publication.
Author Contributions
J.W.K., J.S.L., Y.J.C. and C.K. searched the literature, designed and drew the Table, and wrote and revised the manuscript. All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were created or analyzed in this study.
Conflicts of Interest
The authors declare no conflict of interest.
Funding Statement
This work was supported by the INHA University Research Grant.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1.Garcia-Montoya I.A., Cendon T.S., Arevalo-Gallegos S., Rascon-Cruz Q. Lactoferrin a multiple bioactive protein: An overview. Biochim. Biophys. Acta. 2012;1820:226–236. doi: 10.1016/j.bbagen.2011.06.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Brock J.H. The physiology of lactoferrin. Biochem. Cell Biol. 2002;80:1–6. doi: 10.1139/o01-212. [DOI] [PubMed] [Google Scholar]
- 3.Lonnerdal B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014;99:712S–717S. doi: 10.3945/ajcn.113.071993. [DOI] [PubMed] [Google Scholar]
- 4.Xu S.F., Zhang Y.H., Wang S., Pang Z.Q., Fan Y.G., Li J.Y., Wang Z.Y., Guo C. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol. 2019;21:101090. doi: 10.1016/j.redox.2018.101090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Anderson B.F., Baker H.M., Norris G.E., Rumball S.V., Baker E.N. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature. 1990;344:784–787. doi: 10.1038/344784a0. [DOI] [PubMed] [Google Scholar]
- 6.Vogel H.J. Lactoferrin, a bird’s eye view. Biochem. Cell Biol. 2012;90:233–244. doi: 10.1139/o2012-016. [DOI] [PubMed] [Google Scholar]
- 7.Karav S., German J.B., Rouquie C., Le Parc A., Barile D. Studying lactoferrin N-glycosylation. Int. J. Mol. Sci. 2017;18:870. doi: 10.3390/ijms18040870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Karav S. Selective deglycosylation of lactoferrin to understand glycans’ contribution to antimicrobial activity of lactoferrin. Cell. Mol. Biol. 2018;64:52–57. doi: 10.14715/cmb/2018.64.9.8. [DOI] [PubMed] [Google Scholar]
- 9.Furmanski P., Li Z.P., Fortuna M.B., Swamy C.V., Das M.R. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J. Exp. Med. 1989;170:415–429. doi: 10.1084/jem.170.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Bokkhim H., Bansal N., Grondahl L., Bhandari B. Physico-chemical properties of different forms of bovine lactoferrin. Food Chem. 2013;141:3007–3013. doi: 10.1016/j.foodchem.2013.05.139. [DOI] [PubMed] [Google Scholar]
- 11.Cao X., Ren Y., Lu Q., Wang K., Wu Y., Wang Y., Zhang Y., Cui X.S., Yang Z., Chen Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2022;9:1018336. doi: 10.3389/fnut.2022.1018336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Ostertag F., Grimm V.J., Hinrichs J. Iron saturation and binding capacity of lactoferrin—Development and validation of a colorimetric protocol for quality control. Food Chem. 2025;463:141365. doi: 10.1016/j.foodchem.2024.141365. [DOI] [PubMed] [Google Scholar]
- 13.Lonnerdal B., Iyer S. Lactoferrin: Molecular structure and biological function. Annu. Rev. Nutr. 1995;15:93–110. doi: 10.1146/annurev.nu.15.070195.000521. [DOI] [PubMed] [Google Scholar]
- 14.Shoji H., Oguchi S., Shinohara K., Shimizu T., Yamashiro Y. Effects of iron-unsaturated human lactoferrin on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells. Pediatr. Res. 2007;61:89–92. doi: 10.1203/01.pdr.0000250198.22735.20. [DOI] [PubMed] [Google Scholar]
- 15.Mikulic N., Uyoga M.A., Mwasi E., Stoffel N.U., Zeder C., Karanja S., Zimmermann M.B. Iron absorption is greater from apo-lactoferrin and is similar between holo-lactoferrin and ferrous sulfate: Stable iron isotope studies in Kenyan infants. J. Nutr. 2020;150:3200–3207. doi: 10.1093/jn/nxaa226. [DOI] [PubMed] [Google Scholar]
- 16.Nonnecke B.J., Smith K.L. Inhibition of mastitic bacteria by bovine milk apo-lactoferrin evaluated by in vitro microassay of bacterial growth. J. Dairy Sci. 1984;67:606–613. doi: 10.3168/jds.S0022-0302(84)81345-4. [DOI] [PubMed] [Google Scholar]
- 17.Bishop J.G., Schanbacher F.L., Ferguson L.C., Smith K.L. In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferin. Infect. Immun. 1976;14:911–918. doi: 10.1128/iai.14.4.911-918.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Avalos-Gómez C., Reyes-López M., Ramírez-Rico G., Díaz-Aparicio E., Zenteno E., González-Ruiz C., de la Garza M. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet. Res. 2020;51:36. doi: 10.1186/s13567-020-00759-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Majka G., Śpiewak K., Kurpiewska K., Heczko P., Stochel G., Strus M., Brindell M. A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Anal. Bioanal. Chem. 2013;405:5191–5200. doi: 10.1007/s00216-013-6943-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Gerstein M., Anderson B.F., Norris G.E., Baker E.N., Lesk A.M., Chothia C. Domain closure in lactoferrin: Two hinges produce a see-saw motion between alternative close-packed interfaces. J. Mol. Biol. 1993;234:357–372. doi: 10.1006/jmbi.1993.1592. [DOI] [PubMed] [Google Scholar]
- 21.Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–555. doi: 10.1038/417552a. [DOI] [PubMed] [Google Scholar]
- 22.Visca P., Berlutti F., Vittorioso P., Dalmastri C., Thaller M.C., Valenti P. Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin. Med. Microbiol. Immunol. 1989;178:69–79. doi: 10.1007/BF00203302. [DOI] [PubMed] [Google Scholar]
- 23.Baker E.N., Baker H.M., Kidd R.D. Lactoferrin and transferrin: Functional variations on a common structural framework. Biochem. Cell Biol. 2002;80:27–34. doi: 10.1139/o01-153. [DOI] [PubMed] [Google Scholar]
- 24.Khan J.A., Kumar P., Paramasivam M., Yadav R.S., Sahani M.S., Sharma S., Srinivasan A., Singh T.P. Camel lactoferrin, a transferrin-cum-lactoferrin: Crystal structure of camel apolactoferrin at 2.6Å resolution and structural basis of its dual role. J. Mol. Biol. 2001;309:751–761. doi: 10.1006/jmbi.2001.4692. [DOI] [PubMed] [Google Scholar]
- 25.Kruzel M.L., Bacsi A., Choudhury B., Sur S., Boldogh I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology. 2006;119:159–166. doi: 10.1111/j.1365-2567.2006.02417.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Dionysius D.A., Grieve P.A., Milne J.M. Forms of lactoferrin: Their antibacterial effect on enterotoxigenic Escherichia coli. J. Dairy Sci. 1993;76:2597–2606. doi: 10.3168/jds.S0022-0302(93)77594-3. [DOI] [PubMed] [Google Scholar]
- 27.Longhi C., Conte M.P., Seganti L., Polidoro M., Alfsen A., Valenti P. Influence of lactoferrin on the entry process of Escherichia coli HB101(pRI203) in HeLa cells. Med. Microbiol. Immunol. 1993;182:25–35. doi: 10.1007/BF00195948. [DOI] [PubMed] [Google Scholar]
- 28.Liang Y., Ikeda S.-i., Chen J., Zhang Y., Negishi K., Tsubota K., Kurihara T. Myopia is suppressed by digested lactoferrin or holo-lactoferrin administration. Int. J. Mol. Sci. 2023;24:5815. doi: 10.3390/ijms24065815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.McAbee D.D., Esbensen K. Binding and endocytosis of apo- and holo-lactoferrin by isolated rat hepatocytes. J. Biol. Chem. 1991;266:23624–23631. doi: 10.1016/S0021-9258(18)54329-5. [DOI] [PubMed] [Google Scholar]
- 30.Sreedhara A., Flengsrud R., Langsrud T., Kaul P., Prakash V., Vegarud G.E. Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins. BioMetals. 2010;23:1159–1170. doi: 10.1007/s10534-010-9366-5. [DOI] [PubMed] [Google Scholar]
- 31.Grossmann J.G., Neu M., Pantos E., Schwab F.J., Evans R.W., Townes-Andrews E., Lindley P.F., Appel H., Thies W.-G., Hasnain S.S. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovo-transferrins. J. Mol. Biol. 1992;225:811–819. doi: 10.1016/0022-2836(92)90402-6. [DOI] [PubMed] [Google Scholar]
- 32.Sharma A., Rajashankar K., Yadav M., Singh T. Structure of mare apolactoferrin: The N and C lobes are in the closed form. Acta Crystallogr. D Biol. Crystallogr. 1999;55:1152–1157. doi: 10.1107/S0907444999003807. [DOI] [PubMed] [Google Scholar]
- 33.Kurokawa H., Dewan J.C., Mikami B., Sacchettini J.C., Hirose M. Crystal structure of hen apo-ovotransferrin: Both lobes adopt an open conformation upon loss of iron*. J. Biol. Chem. 1999;274:28445–28452. doi: 10.1074/jbc.274.40.28445. [DOI] [PubMed] [Google Scholar]
- 34.Teraguchi S., Wakabayashi H., Kuwata H., Yamauchi K., Tamura Y. Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals. 2004;17:231–234. doi: 10.1023/B:BIOM.0000027697.83706.32. [DOI] [PubMed] [Google Scholar]
- 35.Cutone A., Rosa L., Lepanto M.S., Scotti M.J., Berlutti F., Bonaccorsi di Patti M.C., Musci G., Valenti P. Lactoferrin efficiently counteracts the inflammation-induced changes of the iron homeostasis system in macrophages. Front. Immunol. 2017;8:705. doi: 10.3389/fimmu.2017.00705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Cavalera M.A., Uva A., Gernone F., Gusatoaia O., Donghia R., Zatelli A. Efficacy of a combination of nucleotides and lactoferrin in maintaining stable or improving the clinical picture and laboratory findings of leishmaniotic dogs: A randomized controlled study. Vet. Parasitol. 2024;332:110319. doi: 10.1016/j.vetpar.2024.110319. [DOI] [PubMed] [Google Scholar]
- 37.Suzuki Y.A., Lopez V., Lonnerdal B. Mammalian lactoferrin receptors: Structure and function. Cell. Mol. Life Sci. 2005;62:2560–2575. doi: 10.1007/s00018-005-5371-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Lepanto M.S., Rosa L., Paesano R., Valenti P., Cutone A. Lactoferrin in aseptic and septic inflammation. Molecules. 2019;24:1323. doi: 10.3390/molecules24071323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Actis Dato V., Chiabrando G.A. The role of low-density lipoprotein receptor-related protein 1 in lipid metabolism, glucose homeostasis and inflammation. Int. J. Mol. Sci. 2018;19:1780. doi: 10.3390/ijms19061780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Bezwoda W.R., Baynes R.D., Khan Q., Mansoor N. Enzyme-linked immunosorbent assay for lactoferrin. Plasma and tissue measurements. Clin. Chim. Acta. 1985;151:61–69. doi: 10.1016/0009-8981(85)90235-9. [DOI] [PubMed] [Google Scholar]
- 41.Latorre D., Puddu P., Valenti P., Gessani S. Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins. 2010;2:54–68. doi: 10.3390/toxins2010054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Embleton N.D., Berrington J.E., McGuire W., Stewart C.J., Cummings S.P. Lactoferrin: Antimicrobial activity and therapeutic potential. Semin. Fetal Neonatal Med. 2013;18:143–149. doi: 10.1016/j.siny.2013.02.001. [DOI] [PubMed] [Google Scholar]
- 43.Birgens H.S. Lactoferrin in plasma measured by an ELISA technique: Evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukaemia. Scand. J. Haematol. 1985;34:326–331. doi: 10.1111/j.1600-0609.1985.tb00757.x. [DOI] [PubMed] [Google Scholar]
- 44.Rado T.A., Wei X.P., Benz E.J., Jr. Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis. Blood. 1987;70:989–993. doi: 10.1182/blood.V70.4.989.989. [DOI] [PubMed] [Google Scholar]
- 45.Rascon-Cruz Q., Espinoza-Sanchez E.A., Siqueiros-Cendon T.S., Nakamura-Bencomo S.I., Arevalo-Gallegos S., Iglesias-Figueroa B.F. Lactoferrin: A glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules. 2021;26:205. doi: 10.3390/molecules26010205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Ellison R.T., 3rd, Giehl T.J., LaForce F.M. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 1988;56:2774–2781. doi: 10.1128/iai.56.11.2774-2781.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Leitch E.C., Willcox M.D. Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr. Eye Res. 1999;19:12–19. doi: 10.1076/ceyr.19.1.12.5342. [DOI] [PubMed] [Google Scholar]
- 48.Nibbering P.H., Ravensbergen E., Welling M.M., van Berkel L.A., van Berkel P.H., Pauwels E.K., Nuijens J.H. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 2001;69:1469–1476. doi: 10.1128/IAI.69.3.1469-1476.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Viejo-Diaz M., Andres M.T., Perez-Gil J., Sanchez M., Fierro J.F. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochem. 2003;68:217–227. doi: 10.1023/A:1022657630698. [DOI] [PubMed] [Google Scholar]
- 50.Velliyagounder K., Kaplan J.B., Furgang D., Legarda D., Diamond G., Parkin R.E., Fine D.H. One of two human lactoferrin variants exhibits increased antibacterial and transcriptional activation activities and is associated with localized juvenile periodontitis. Infect. Immun. 2003;71:6141–6147. doi: 10.1128/IAI.71.11.6141-6147.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta. 1992;1121:130–136. doi: 10.1016/0167-4838(92)90346-F. [DOI] [PubMed] [Google Scholar]
- 52.Arnold R.R., Russell J.E., Champion W.J., Brewer M., Gauthier J.J. Bactericidal activity of human lactoferrin: Differentiation from the stasis of iron deprivation. Infect. Immun. 1982;35:792–799. doi: 10.1128/iai.35.3.792-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Sessa R., Di Pietro M., Filardo S., Bressan A., Mastromarino P., Biasucci A.V., Rosa L., Cutone A., Berlutti F., Paesano R., et al. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog. Dis. 2017;75:ftx054. doi: 10.1093/femspd/ftx054. [DOI] [PubMed] [Google Scholar]
- 54.Sessa R., Di Pietro M., Filardo S., Bressan A., Rosa L., Cutone A., Frioni A., Berlutti F., Paesano R., Valenti P. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem. Cell Biol. 2017;95:34–40. doi: 10.1139/bcb-2016-0049. [DOI] [PubMed] [Google Scholar]
- 55.Wakabayashi H., Yamauchi K., Takase M. Inhibitory effects of bovine lactoferrin and lactoferricin B on Enterobacter sakazakii. Biocontrol Sci. 2008;13:29–32. doi: 10.4265/bio.13.29. [DOI] [PubMed] [Google Scholar]
- 56.Ochoa T.J., Noguera-Obenza M., Ebel F., Guzman C.A., Gomez H.F., Cleary T.G. Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect. Immun. 2003;71:5149–5155. doi: 10.1128/IAI.71.9.5149-5155.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Nascimento de Araujo A., Giugliano L.G. Human milk fractions inhibit the adherence of diffusely adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells. FEMS Microbiol. Lett. 2000;184:91–94. doi: 10.1016/S0378-1097(00)00028-8. [DOI] [PubMed] [Google Scholar]
- 58.Qiu J., Hendrixson D.R., Baker E.N., Murphy T.F., St Geme J.W., 3rd, Plaut A.G. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc. Natl. Acad. Sci. USA. 1998;95:12641–12646. doi: 10.1073/pnas.95.21.12641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Dial E.J., Romero J.J., Headon D.R., Lichtenberger L.M. Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J. Pharm. Pharmacol. 2000;52:1541–1546. doi: 10.1211/0022357001777595. [DOI] [PubMed] [Google Scholar]
- 60.Superti F., Ammendolia M.G., Valenti P., Seganti L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol. 1997;186:83–91. doi: 10.1007/s004300050049. [DOI] [PubMed] [Google Scholar]
- 61.Morici P., Florio W., Rizzato C., Ghelardi E., Tavanti A., Rossolini G.M., Lupetti A. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur. J. Clin. Microbiol. Infect. Dis. 2017;36:1739–1748. doi: 10.1007/s10096-017-2987-7. [DOI] [PubMed] [Google Scholar]
- 62.Morita Y., Ishikawa K., Nakano M., Wakabayashi H., Yamauchi K., Abe F., Ooka T., Hironaka S. Effects of lactoferrin and lactoperoxidase-containing food on the oral hygiene status of older individuals: A randomized, double-blinded, placebo-controlled clinical trial. Geriatr. Gerontol. Int. 2017;17:714–721. doi: 10.1111/ggi.12776. [DOI] [PubMed] [Google Scholar]
- 63.Rogan M.P., Taggart C.C., Greene C.M., Murphy P.G., O’Neill S.J., McElvaney N.G. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis. 2004;190:1245–1253. doi: 10.1086/423821. [DOI] [PubMed] [Google Scholar]
- 64.Wu J., Hu Y., Du C., Piao J., Yang L., Yang X. The effect of recombinant human lactoferrin from the milk of transgenic cows on Salmonella enterica serovar typhimurium infection in mice. Food Funct. 2016;7:308–314. doi: 10.1039/C5FO00817D. [DOI] [PubMed] [Google Scholar]
- 65.Sijbrandij T., Ligtenberg A.J., Nazmi K., van den Keijbus P.A.M., Veerman E.C.I., Bolscher J.G.M., Bikker F.J. Lfchimera protects HeLa cells from invasion by Yersinia spp. in vitro. Biometals. 2018;31:941–950. doi: 10.1007/s10534-018-0136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Garcia-Borjas K.A., Ceballos-Olvera I., Luna-Castro S., Pena-Avelino Y. Bovine lactoferrin can decrease the in vitro biofilm production and show synergy with antibiotics against Listeria and Escherichia coli isolates. Protein Pept. Lett. 2021;28:101–107. doi: 10.2174/0929866527666200403111743. [DOI] [PubMed] [Google Scholar]
- 67.Iglesias-Figueroa B., Valdiviezo-Godina N., Siqueiros-Cendon T., Sinagawa-Garcia S., Arevalo-Gallegos S., Rascon-Cruz Q. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial Activity. Int. J. Mol. Sci. 2016;17:902. doi: 10.3390/ijms17060902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.van Berkel P.H., Geerts M.E., van Veen H.A., Mericskay M., de Boer H.A., Nuijens J.H. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 1997;328:145–151. doi: 10.1042/bj3280145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Gu H., Wang Y., Wang Y., Ding L., Huan W., Yang Y., Fang F., Cui W. Global bibliometric and visualized analysis of research on lactoferrin from 1978 to 2024. Mol. Nutr. Food Res. 2024;68:e2400379. doi: 10.1002/mnfr.202400379. [DOI] [PubMed] [Google Scholar]
- 70.Beeckman D.S., Van Droogenbroeck C.M., De Cock B.J., Van Oostveldt P., Vanrompay D.C. Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasion in HD11 chicken macrophages. Vet. Res. 2007;38:729–739. doi: 10.1051/vetres:2007028. [DOI] [PubMed] [Google Scholar]
- 71.Wang X., Hirmo S., Willen R., Wadstrom T. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model. J. Med. Microbiol. 2001;50:430–435. doi: 10.1099/0022-1317-50-5-430. [DOI] [PubMed] [Google Scholar]
- 72.Fulgione A., Nocerino N., Iannaccone M., Roperto S., Capuano F., Roveri N., Lelli M., Crasto A., Calogero A., Pilloni A.P., et al. Lactoferrin adsorbed onto biomimetic hydroxyapatite nanocrystals controlling—In vivo—The Helicobacter pylori infection. PLoS ONE. 2016;11:e0158646. doi: 10.1371/journal.pone.0158646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Ciccaglione A.F., Di Giulio M., Di Lodovico S., Di Campli E., Cellini L., Marzio L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: An in vitro and in vivo study. J. Antimicrob. Chemother. 2019;74:1069–1077. doi: 10.1093/jac/dky510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Cutone A., Lepanto M.S., Rosa L., Scotti M.J., Rossi A., Ranucci S., De Fino I., Bragonzi A., Valenti P., Musci G., et al. Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int. J. Mol. Sci. 2019;20:2128. doi: 10.3390/ijms20092128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Mosquito S., Ochoa T.J., Cok J., Cleary T.G. Effect of bovine lactoferrin in Salmonella ser. Typhimurium infection in mice. Biometals. 2010;23:515–521. doi: 10.1007/s10534-010-9325-1. [DOI] [PubMed] [Google Scholar]
- 76.Drago-Serrano M.E., Rivera-Aguilar V., Resendiz-Albor A.A., Campos-Rodriguez R. Lactoferrin increases both resistance to Salmonella typhimurium infection and the production of antibodies in mice. Immunol. Lett. 2010;134:35–46. doi: 10.1016/j.imlet.2010.08.007. [DOI] [PubMed] [Google Scholar]
- 77.Sato N., Kurotaki H., Ikeda S., Daio R., Nishinome N., Mikami T., Matsumoto T. Lactoferrin inhibits Bacillus cereus growth, and heme analogs recover its growth. Biol. Pharm. Bull. 1999;22:197–199. doi: 10.1248/bpb.22.197. [DOI] [PubMed] [Google Scholar]
- 78.Jugert C.S., Didier A., Plotz M., Jessberger N. Strain-specific antimicrobial activity of lactoferrin-based food supplements. J. Food Prot. 2023;86:100153. doi: 10.1016/j.jfp.2023.100153. [DOI] [PubMed] [Google Scholar]
- 79.Chilton C.H., Crowther G.S., Spiewak K., Brindell M., Singh G., Wilcox M.H., Monaghan T.M. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection. J. Antimicrob. Chemother. 2016;71:975–985. doi: 10.1093/jac/dkv452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Hwang S.A., Kruzel M.L., Actor J.K. Immunomodulatory effects of recombinant lactoferrin during MRSA infection. Int. Immunopharmacol. 2014;20:157–163. doi: 10.1016/j.intimp.2014.02.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Bhimani R.S., Vendrov Y., Furmanski P. Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice. J. Appl. Microbiol. 1999;86:135–144. doi: 10.1046/j.1365-2672.1999.00644.x. [DOI] [PubMed] [Google Scholar]
- 82.Guillen C., McInnes I.B., Vaughan D.M., Kommajosyula S., Van Berkel P.H., Leung B.P., Aguila A., Brock J.H. Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J. Immunol. 2002;168:3950–3957. doi: 10.4049/jimmunol.168.8.3950. [DOI] [PubMed] [Google Scholar]
- 83.Chen H.-A., Chiu C.-C., Huang C.-Y., Chen L.-J., Tsai C.-C., Hsu T.-C., Tzang B.-S. Lactoferrin increases antioxidant activities and ameliorates hepatic fibrosis in lupus-prone mice fed with a high-cholesterol diet. J. Med. Food. 2016;19:670–677. doi: 10.1089/jmf.2015.3634. [DOI] [PubMed] [Google Scholar]
- 84.Berlutti F., Ajello M., Bosso P., Morea C., Petrucca A., Antonini G., Valenti P. Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals. 2004;17:271–278. doi: 10.1023/b:biom.0000027704.53859.d3. [DOI] [PubMed] [Google Scholar]
- 85.Velusamy S.K., Markowitz K., Fine D.H., Velliyagounder K. Human lactoferrin protects against Streptococcus mutans-induced caries in mice. Oral Dis. 2016;22:148–154. doi: 10.1111/odi.12401. [DOI] [PubMed] [Google Scholar]
- 86.Eker F., Duman H., Erturk M., Karav S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front. Immunol. 2024;15:1402135. doi: 10.3389/fimmu.2024.1402135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Cheneau C., Eichholz K., Tran T.H., Tran T.T.P., Paris O., Henriquet C., Bajramovic J.J., Pugniere M., Kremer E.J. Lactoferrin retargets human adenoviruses to TLR4 to induce an abortive NLRP3-associated pyroptotic response in human phagocytes. Front. Immunol. 2021;12:685218. doi: 10.3389/fimmu.2021.685218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Ammendolia M.G., Pietrantoni A., Tinari A., Valenti P., Superti F. Bovine lactoferrin inhibits echovirus endocytic pathway by interacting with viral structural polypeptides. Antiviral Res. 2007;73:151–160. doi: 10.1016/j.antiviral.2006.09.002. [DOI] [PubMed] [Google Scholar]
- 89.Chien Y.J., Chen W.J., Hsu W.L., Chiou S.S. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology. 2008;379:143–151. doi: 10.1016/j.virol.2008.06.017. [DOI] [PubMed] [Google Scholar]
- 90.Kaito M., Iwasa M., Fujita N., Kobayashi Y., Kojima Y., Ikoma J., Imoto I., Adachi Y., Hamano H., Yamauchi K. Effect of lactoferrin in patients with chronic Hepatitis C: Combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 2007;22:1894–1897. doi: 10.1111/j.1440-1746.2007.04858.x. [DOI] [PubMed] [Google Scholar]
- 91.Ammendolia M.G., Marchetti M., Superti F. Bovine lactoferrin prevents the entry and intercellular spread of Herpes simplex virus type 1 in green monkey kidney cells. Antiviral Res. 2007;76:252–262. doi: 10.1016/j.antiviral.2007.07.005. [DOI] [PubMed] [Google Scholar]
- 92.Andersen J.H., Osbakk S.A., Vorland L.H., Traavik T., Gutteberg T.J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 2001;51:141–149. doi: 10.1016/S0166-3542(01)00146-2. [DOI] [PubMed] [Google Scholar]
- 93.Beljaars L., van der Strate B.W., Bakker H.I., Reker-Smit C., van Loenen-Weemaes A.M., Wiegmans F.C., Harmsen M.C., Molema G., Meijer D.K. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Res. 2004;63:197–208. doi: 10.1016/j.antiviral.2004.05.002. [DOI] [PubMed] [Google Scholar]
- 94.Kaplan M., Baktiroglu M., Kalkan A.E., Canbolat A.A., Lombardo M., Raposo A., de Brito Alves J.L., Witkowska A.M., Karav S. Lactoferrin: A promising therapeutic molecule against human papillomavirus. Nutrients. 2024;16:3073. doi: 10.3390/nu16183073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Carvalho C.A.M., Casseb S.M.M., Goncalves R.B., Silva E.V.P., Gomes A.M.O., Vasconcelos P.F.C. Bovine lactoferrin activity against Chikungunya and Zika viruses. J. Gen. Virol. 2017;98:1749–1754. doi: 10.1099/jgv.0.000849. [DOI] [PubMed] [Google Scholar]
- 96.Hu Y., Meng X., Zhang F., Xiang Y., Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg. Microbes Infect. 2021;10:317–330. doi: 10.1080/22221751.2021.1888660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Duman H., Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front. Immunol. 2023;14:121451433. doi: 10.3389/fimmu.2023.1214514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Sokolov A.V., Isakova-Sivak I.N., Mezhenskaya D.A., Kostevich V.A., Gorbunov N.P., Elizarova A.Y., Matyushenko V.A., Berson Y.M., Grudinina N.A., Kolmakov N.N., et al. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: From the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals. 2023;36:437–462. doi: 10.1007/s10534-022-00458-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.El-Fakharany E.M., El-Gendi H., El-Maradny Y.A., Abu-Serie M.M., Abdel-Wahhab K.G., Shabana M.E., Ashry M. Inhibitory effect of lactoferrin-coated zinc nanoparticles on SARS-CoV-2 replication and entry along with improvement of lung fibrosis induced in adult male albino rats. Int. J. Biol. Macromol. 2023;245:125552. doi: 10.1016/j.ijbiomac.2023.125552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.He S.T., Qin H., Guan L., Liu K., Hong B., Zhang X., Lou F., Li M., Lin W., Chen Y., et al. Bovine lactoferrin inhibits SARS-CoV-2 and SARS-CoV-1 by targeting the RdRp complex and alleviates viral infection in the hamster model. J. Med. Virol. 2023;95:e28281. doi: 10.1002/jmv.28281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Alves N.S., Azevedo A.S., Dias B.M., Horbach I.S., Setatino B.P., Denani C.B., Schwarcz W.D., Lima S.M.B., Missailidis S., Ano Bom A.P.D., et al. Inhibition of SARS-CoV-2 infection in Vero cells by bovine lactoferrin under different iron-saturation states. Pharmaceuticals. 2023;16:1352. doi: 10.3390/ph16101352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Arnold D., Di Biase A.M., Marchetti M., Pietrantoni A., Valenti P., Seganti L., Superti F. Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antiviral Res. 2002;53:153–158. doi: 10.1016/S0166-3542(01)00197-8. [DOI] [PubMed] [Google Scholar]
- 103.Persson B.D., Lenman A., Frangsmyr L., Schmid M., Ahlm C., Pluckthun A., Jenssen H., Arnberg N. Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells. J. Virol. 2020;94:e00542-20. doi: 10.1128/JVI.00542-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Johansson C., Jonsson M., Marttila M., Persson D., Fan X.L., Skog J., Frangsmyr L., Wadell G., Arnberg N. Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells. J. Virol. 2007;81:954–963. doi: 10.1128/JVI.01995-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Huang Y., Zhang P., Han S., He H. Lactoferrin alleviates inflammation and regulates gut microbiota composition in H5N1-infected mice. Nutrients. 2023;15:3362. doi: 10.3390/nu15153362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Wrobel M., Malaczewska J., Kaczorek-Lukowska E. Antiviral effect of bovine lactoferrin against Enterovirus E. Molecules. 2022;27:5569. doi: 10.3390/molecules27175569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Weng T.Y., Chen L.C., Shyu H.W., Chen S.H., Wang J.R., Yu C.K., Lei H.Y., Yeh T.M. Lactoferrin inhibits Enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res. 2005;67:31–37. doi: 10.1016/j.antiviral.2005.03.005. [DOI] [PubMed] [Google Scholar]
- 108.Lin T.Y., Chu C., Chiu C.H. Lactoferrin inhibits Enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J. Infect. Dis. 2002;186:1161–1164. doi: 10.1086/343809. [DOI] [PubMed] [Google Scholar]
- 109.Luo Y., Xiang K., Liu J., Song J., Feng J., Chen J., Dai Y., Hu Y., Zhuang H., Zhou Y. Inhibition of in vitro infection of Hepatitis B virus by human breastmilk. Nutrients. 2022;14:1561. doi: 10.3390/nu14081561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Florian P.E., Macovei A., Lazar C., Milac A.L., Sokolowska I., Darie C.C., Evans R.W., Roseanu A., Branza-Nichita N. Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. J. Med. Virol. 2013;85:780–788. doi: 10.1002/jmv.23549. [DOI] [PubMed] [Google Scholar]
- 111.Zhou H., Zhu Y., Liu N., Zhang W., Han J. Effect of iron saturation of bovine lactoferrin on the inhibition of Hepatitis B virus in vitro. PeerJ. 2024;12:e17302. doi: 10.7717/peerj.17302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Redwan E.M., El-Fakharany E.M., Uversky V.N., Linjawi M.H. Screening the anti-infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against Hepatitis C virus. BMC Complement. Altern. Med. 2014;14:219. doi: 10.1186/1472-6882-14-219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Redwan E.M., Uversky V.N., El-Fakharany E.M., Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biol. 2014;337:581–595. doi: 10.1016/j.crvi.2014.08.003. [DOI] [PubMed] [Google Scholar]
- 114.Ikeda M., Nozaki A., Sugiyama K., Tanaka T., Naganuma A., Tanaka K., Sekihara H., Shimotohno K., Saito M., Kato N. Characterization of antiviral activity of lactoferrin against Hepatitis C virus infection in human cultured cells. Virus Res. 2000;66:51–63. doi: 10.1016/S0168-1702(99)00121-5. [DOI] [PubMed] [Google Scholar]
- 115.Picard-Jean F., Bouchard S., Larivee G., Bisaillon M. The intracellular inhibition of HCV replication represents a novel mechanism of action by the innate immune lactoferrin protein. Antiviral Res. 2014;111:13–22. doi: 10.1016/j.antiviral.2014.08.012. [DOI] [PubMed] [Google Scholar]
- 116.El-Fakharany E.M., Sanchez L., Al-Mehdar H.A., Redwan E.M. Effectiveness of human, camel, bovine and sheep lactoferrin on the Hepatitis C virus cellular infectivity: Comparison study. Virol. J. 2013;10:199. doi: 10.1186/1743-422X-10-199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Tanaka K., Ikeda M., Nozaki A., Kato N., Tsuda H., Saito S., Sekihara H. Lactoferrin inhibits Hepatitis C virus viremia in patients with chronic Hepatitis C: A pilot study. Jpn. J. Cancer Res. 1999;90:367–371. doi: 10.1111/j.1349-7006.1999.tb00756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Marchetti M., Trybala E., Superti F., Johansson M., Bergstrom T. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans. Virology. 2004;318:405–413. doi: 10.1016/j.virol.2003.09.029. [DOI] [PubMed] [Google Scholar]
- 119.Wang X., Yue L., Dang L., Yang J., Chen Z., Wang X., Shu J., Li Z. Role of sialylated glycans on bovine lactoferrin against Influenza virus. Glycoconj. J. 2021;38:689–696. doi: 10.1007/s10719-021-10029-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Superti F., Agamennone M., Pietrantoni A., Ammendolia M.G. Bovine lactoferrin prevents Influenza A virus infection by interfering with the fusogenic function of viral hemagglutinin. Viruses. 2019;11:51. doi: 10.3390/v11010051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Pietrantoni A., Dofrelli E., Tinari A., Ammendolia M.G., Puzelli S., Fabiani C., Donatelli I., Superti F. Bovine lactoferrin inhibits Influenza A virus induced programmed cell death in vitro. Biometals. 2010;23:465–475. doi: 10.1007/s10534-010-9323-3. [DOI] [PubMed] [Google Scholar]
- 122.Ammendolia M.G., Agamennone M., Pietrantoni A., Lannutti F., Siciliano R.A., De Giulio B., Amici C., Superti F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of Influenza virus. Pathog. Glob. Health. 2012;106:12–19. doi: 10.1179/2047773212Y.0000000004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Pietrantoni A., Ammendolia M.G., Superti F. Bovine lactoferrin: Involvement of metal saturation and carbohydrates in the inhibition of Influenza virus infection. Biochem. Cell Biol. 2012;90:442–448. doi: 10.1139/o11-072. [DOI] [PubMed] [Google Scholar]
- 124.Carvalho C.A., Sousa I.P., Jr., Silva J.L., Oliveira A.C., Goncalves R.B., Gomes A.M. Inhibition of mayaro virus infection by bovine lactoferrin. Virology. 2014;452–453:297–302. doi: 10.1016/j.virol.2014.01.022. [DOI] [PubMed] [Google Scholar]
- 125.Denani C.B., Real-Hohn A., de Carvalho C.A.M., Gomes A.M.O., Goncalves R.B. Lactoferrin affects rhinovirus B-14 entry into H1-HeLa cells. Arch. Virol. 2021;166:1203–1211. doi: 10.1007/s00705-021-04993-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Superti F., Siciliano R., Rega B., Giansanti F., Valenti P., Antonini G. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim. Biophys. Acta. 2001;1528:107–115. doi: 10.1016/S0304-4165(01)00178-7. [DOI] [PubMed] [Google Scholar]
- 127.Salaris C., Scarpa M., Elli M., Bertolini A., Guglielmetti S., Pregliasco F., Blandizzi C., Brun P., Castagliuolo I. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro. Nutrients. 2021;13:328. doi: 10.3390/nu13020328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Campione E., Lanna C., Cosio T., Rosa L., Conte M.P., Iacovelli F., Romeo A., Falconi M., Del Vecchio C., Franchin E., et al. Lactoferrin against SARS-CoV-2: In vitro and in silico evidences. Front. Pharmacol. 2021;12:666600. doi: 10.3389/fphar.2021.666600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.da Silva A.M.V., Machado T.L., Nascimento R.S., Rodrigues M., Coelho F.S., Tubarao L.N., da Rosa L.C., Bayma C., Rocha V.P., Frederico A.B.T., et al. Immunomodulatory effect of bovine lactoferrin during SARS-CoV-2 infection. Front. Immunol. 2024;15:1456634. doi: 10.3389/fimmu.2024.1456634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Pietrantoni A., Fortuna C., Remoli M.E., Ciufolini M.G., Superti F. Bovine lactoferrin inhibits Toscana virus infection by binding to heparan sulphate. Viruses. 2015;7:480–495. doi: 10.3390/v7020480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Dierick M., Van der Weken H., Rybarczyk J., Vanrompay D., Devriendt B., Cox E. Porcine and bovine forms of lactoferrin inhibit growth of porcine enterotoxigenic Escherichia coli and degrade its virulence factors. Appl. Environ. Microbiol. 2020;86:e00524-20. doi: 10.1128/AEM.00524-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Skalickova S., Heger Z., Krejcova L., Pekarik V., Bastl K., Janda J., Kostolansky F., Vareckova E., Zitka O., Adam V., et al. Perspective of use of antiviral peptides against Influenza virus. Viruses. 2015;7:5428–5442. doi: 10.3390/v7102883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Berlutti F., Pantanella F., Natalizi T., Frioni A., Paesano R., Polimeni A., Valenti P. Antiviral properties of lactoferrin—A natural immunity molecule. Molecules. 2011;16:6992–7018. doi: 10.3390/molecules16086992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.van der Strate B.W., Harmsen M.C., Schafer P., Swart P.J., The T.H., Jahn G., Speer C.P., Meijer D.K., Hamprecht K. Viral load in breast milk correlates with transmission of human cytomegalovirus to preterm neonates, but lactoferrin concentrations do not. Clin. Diagn. Lab. Immunol. 2001;8:818–821. doi: 10.1128/CDLI.8.4.818-821.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Marchetti M., Superti F., Ammendolia M.G., Rossi P., Valenti P., Seganti L. Inhibition of poliovirus type 1 infection by iron-, manganese- and zinc-saturated lactoferrin. Med. Microbiol. Immunol. 1999;187:199–204. doi: 10.1007/s004300050093. [DOI] [PubMed] [Google Scholar]
- 136.Briana D.D., Papadopoulou A., Syridou G., Marchisio E., Kapsabeli E., Daskalaki A., Papaevangelou V. Early human milk lactoferrin during SARS-CoV-2 infection. J. Matern. Fetal Neonatal Med. 2022;35:6704–6707. doi: 10.1080/14767058.2021.1920010. [DOI] [PubMed] [Google Scholar]
- 137.Kirkpatrick C.H., Green I., Rich R.R., Schade A.L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: Relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J. Infect. Dis. 1971;124:539–544. doi: 10.1093/infdis/124.6.539. [DOI] [PubMed] [Google Scholar]
- 138.Bellamy W., Wakabayashi H., Takase M., Kawase K., Shimamura S., Tomita M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. 1993;182:97–105. doi: 10.1007/BF00189377. [DOI] [PubMed] [Google Scholar]
- 139.Kuipers M.E., de Vries H.G., Eikelboom M.C., Meijer D.K., Swart P.J. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 1999;43:2635–2641. doi: 10.1128/AAC.43.11.2635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Fernandes K.E., Weeks K., Carter D.A. Lactoferrin is broadly active against yeasts and highly synergistic with Amphotericin B. Antimicrob. Agents Chemother. 2020;64:02284-19. doi: 10.1128/AAC.02284-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Gruden S., Poklar Ulrih N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021;22:11264. doi: 10.3390/ijms222011264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Zarember K.A., Sugui J.A., Chang Y.C., Kwon-Chung K.J., Gallin J.I. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J. Immunol. 2007;178:6367–6373. doi: 10.4049/jimmunol.178.10.6367. [DOI] [PubMed] [Google Scholar]
- 143.Zarember K.A., Cruz A.R., Huang C.Y., Gallin J.I. Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2009;53:2654–2656. doi: 10.1128/AAC.01547-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Pawar S., Markowitz K., Velliyagounder K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Arch. Oral Biol. 2022;137:105399. doi: 10.1016/j.archoralbio.2022.105399. [DOI] [PubMed] [Google Scholar]
- 145.Lupetti A., Brouwer C.P., Bogaards S.J., Welling M.M., de Heer E., Campa M., van Dissel J.T., Friesen R.H., Nibbering P.H. Human lactoferrin-derived peptide’s antifungal activities against disseminated Candida albicans infection. J. Infect. Dis. 2007;196:1416–1424. doi: 10.1086/522427. [DOI] [PubMed] [Google Scholar]
- 146.Valenti P., Visca P., Antonini G., Orsi N. Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol. Lett. 1986;33:271–275. doi: 10.1111/j.1574-6968.1986.tb01285.x. [DOI] [Google Scholar]
- 147.Nikawa H., Samaranayake L., Tenovuo J., Pang K.M., Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch. Oral Biol. 1993;38:1057–1063. doi: 10.1016/0003-9969(93)90167-K. [DOI] [PubMed] [Google Scholar]
- 148.Xu Y., Samaranayake Y., Samaranayake L., Nikawa H. In vitro susceptibility of Candida species to lactoferrin. Sabouraudia. 1999;37:35–41. doi: 10.1080/02681219980000051. [DOI] [PubMed] [Google Scholar]
- 149.Nikawa H., Samaranayake L., Tenovuo J., Hamada T. The effect of antifungal agents on the in vitro susceptibility of Candida albicans to apo-lactoferrin. Arch. Oral Biol. 1994;39:921–923. doi: 10.1016/0003-9969(94)90026-4. [DOI] [PubMed] [Google Scholar]
- 150.Okutomi T., Abe S., Tansho S., Wakabayashi H., Kawase K., Yamaguchi H. Augmented inhibition of growth of Candida albicans by neutrophils in the presence of lactoferrin. FEMS Immunol. Med. Microbiol. 1997;18:105–112. doi: 10.1111/j.1574-695X.1997.tb01034.x. [DOI] [PubMed] [Google Scholar]
- 151.Nikawa H., Samaranayake L., Hamada T. Modulation of the anti-Candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro. Arch. Oral Biol. 1995;40:581–584. doi: 10.1016/0003-9969(94)00195-H. [DOI] [PubMed] [Google Scholar]
- 152.Wakabayashi H., Uchida K., Yamauchi K., Teraguchi S., Hayasawa H., Yamaguchi H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother. 2000;46:595–602. doi: 10.1093/jac/46.4.595. [DOI] [PubMed] [Google Scholar]
- 153.Lai Y.W., Campbell L.T., Wilkins M.R., Pang C.N., Chen S., Carter D.A. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. Int. J. Antimicrob. Agents. 2016;48:388–394. doi: 10.1016/j.ijantimicag.2016.06.012. [DOI] [PubMed] [Google Scholar]
- 154.Samaranayake Y.H., Samaranayake L.P., Wu P.C., So M. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. APMIS. 1997;105:875–883. doi: 10.1111/j.1699-0463.1997.tb05097.x. [DOI] [PubMed] [Google Scholar]
- 155.Lai Y.W., Pang C.N.I., Campbell L.T., Chen S.C.A., Wilkins M.R., Carter D.A. Different pathways mediate amphotericin-lactoferrin drug synergy in Cryptococcus and Saccharomyces. Front. Microbiol. 2019;10:2195. doi: 10.3389/fmicb.2019.02195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Kang J.J., Schaber M.D., Srinivasula S.M., Alnemri E.S., Litwack G., Hall D.J., Bjornsti M.-A. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1999;274:3189–3198. doi: 10.1074/jbc.274.5.3189. [DOI] [PubMed] [Google Scholar]
- 157.Wakabayashi H., Takakura N., Yamauchi K., Teraguchi S., Uchida K., Yamaguchi H., Tamura Y. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J. Med. Microbiol. 2002;51:844–850. doi: 10.1099/0022-1317-51-10-844. [DOI] [PubMed] [Google Scholar]
- 158.Lodish H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D., Darnell J. Molecular Cell Biology. 4th ed. WH Freeman; New York, NY, USA: 2000. Viruses: Structure, function, and uses. [Google Scholar]
- 159.Anand N. Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites. Front. Parasitol. 2023;2:1330398. doi: 10.3389/fpara.2023.1330398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Zarzosa-Moreno D., Avalos-Gomez C., Ramirez-Texcalco L.S., Torres-Lopez E., Ramirez-Mondragon R., Hernandez-Ramirez J.O., Serrano-Luna J., de la Garza M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules. 2020;25:5763. doi: 10.3390/molecules25245763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Leon-Sicairos N., Reyes-Lopez M., Ordaz-Pichardo C., de la Garza M. Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochem. Cell Biol. 2006;84:327–336. doi: 10.1139/o06-060. [DOI] [PubMed] [Google Scholar]
- 162.Leon-Sicairos N., Lopez-Soto F., Reyes-Lopez M., Godinez-Vargas D., Ordaz-Pichardo C., de la Garza M. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin. Med. Res. 2006;4:106–113. doi: 10.3121/cmr.4.2.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Ikadai H., Tanaka T., Shibahara N., Tanaka H., Matsuu A., Kudo N., Shimazaki K., Igarashi I., Oyamada T. Inhibitory effect of lactoferrin on in vitro growth of Babesia caballi. Am. J. Trop. Med. Hyg. 2005;73:710–712. doi: 10.4269/ajtmh.2005.73.710. [DOI] [PubMed] [Google Scholar]
- 164.Paredes J.L., Sparks H., White A.C., Jr., Martinez-Traverso G., Ochoa T., Castellanos-Gonzalez A. Killing of Cryptosporidium sporozoites by lactoferrin. Am. J. Trop. Med. Hyg. 2017;97:774–776. doi: 10.4269/ajtmh.16-0804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Lopez-Soto F., Leon-Sicairos N., Nazmi K., Bolscher J.G., de la Garza M. Microbicidal effect of the lactoferrin peptides lactoferricin17-30, lactoferrampin265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals. 2010;23:563–568. doi: 10.1007/s10534-010-9295-3. [DOI] [PubMed] [Google Scholar]
- 166.Diaz-Godinez C., Gonzalez-Galindo X., Meza-Menchaca T., Bobes R.J., de la Garza M., Leon-Sicairos N., Laclette J.P., Carrero J.C. Synthetic bovine lactoferrin peptide lfampin kills Entamoeba histolytica trophozoites by necrosis and resolves amoebic intracecal infection in mice. Biosci. Rep. 2019;39:BSR20180850. doi: 10.1042/BSR20180850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Turchany J.M., Aley S.B., Gillin F.D. Giardicidal activity of lactoferrin and N-terminal peptides. Infect. Immun. 1995;63:4550–4552. doi: 10.1128/iai.63.11.4550-4552.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Asthana S., Gupta P.K., Jaiswal A.K., Dube A., Chourasia M.K. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: In vitro and in vivo studies. Nanomedicine. 2015;10:1093–1109. doi: 10.2217/nnm.14.182. [DOI] [PubMed] [Google Scholar]
- 169.Anand N., Kanwar R.K., Sehgal R., Kanwar J.R. Antiparasitic and immunomodulatory potential of oral nanocapsules encapsulated lactoferrin protein against Plasmodium berghei. Nanomedicine. 2016;11:47–62. doi: 10.2217/nnm.15.181. [DOI] [PubMed] [Google Scholar]
- 170.Obayashi M., Kimura M., Haraguchi A., Gotanda M., Kitagawa T., Matsuno M., Sakao K., Hamanaka D., Kusakisako K., Kameda T., et al. Bovine lactoferrin inhibits Plasmodium berghei growth by binding to heme. Sci. Rep. 2024;14:20344. doi: 10.1038/s41598-024-70840-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Fritsch G., Sawatzki G., Treumer J., Jung A., Spira D.T. Plasmodium falciparum: Inhibition in vitro with lactoferrin, desferriferrithiocin, and desferricrocin. Exp. Parasitol. 1987;63:1–9. doi: 10.1016/0014-4894(87)90072-5. [DOI] [PubMed] [Google Scholar]
- 172.Eda S., Eda K., Prudhomme J.G., Sherman I.W. Inhibitory activity of human lactoferrin and its peptide on chondroitin sulfate A-, CD36-, and thrombospondin-mediated cytoadherence of Plasmodium falciparum-infected erythrocytes. Blood. 1999;94:326–332. doi: 10.1182/blood.V94.1.326.413a32_326_332. [DOI] [PubMed] [Google Scholar]
- 173.Anand N., Sehgal R., Kanwar R.K., Dubey M.L., Vasishta R.K., Kanwar J.R. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int. J. Nanomedicine. 2015;10:6355–6369. doi: 10.2147/IJN.S85286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Lu J.M., Jin G.N., Xin Y., Ma J.W., Shen X.Y., Quan Y.Z., Liu Y.M., Zhou J.Y., Wang B.Z., Li Y.B., et al. Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury. Int. J. Parasitol. Drugs Drug Resist. 2025;27:100575. doi: 10.1016/j.ijpddr.2024.100575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Lee H.Y., Hyung S., Lee J.W., Kim J., Shin M.H., Ryu J.S., Park S.J. Identification of antigenic proteins in Trichomonas vaginalis. Korean J. Parasitol. 2011;49:79–83. doi: 10.3347/kjp.2011.49.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Cheng W.H., Chen R.M., Ong S.C., Yeh Y.M., Huang P.J., Lee C.C. Interaction of human neutrophils with Trichomonas vaginalis protozoan highlights lactoferrin secretion. J. Microbiol. Immunol. Infect. 2025;58:138–147. doi: 10.1016/j.jmii.2024.11.004. [DOI] [PubMed] [Google Scholar]
- 177.Lima M.F., Kierszenbaum F. Lactoferrin effects on the interaction of blood forms of Trypanosoma cruzi with mononuclear phagocytes. Int. J. Parasitol. 1987;17:1205–1208. doi: 10.1016/0020-7519(87)90173-1. [DOI] [PubMed] [Google Scholar]
- 178.Ando K., Hasegawa K., Shindo K., Furusawa T., Fujino T., Kikugawa K., Nakano H., Takeuchi O., Akira S., Akiyama T., et al. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J. 2010;277:2051–2066. doi: 10.1111/j.1742-4658.2010.07620.x. [DOI] [PubMed] [Google Scholar]
- 179.Crouch S.P., Slater K.J., Fletcher J. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood. 1992;80:235–240. doi: 10.1182/blood.V80.1.235.235. [DOI] [PubMed] [Google Scholar]
- 180.Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell Biol. 2012;90:252–268. doi: 10.1139/o11-056. [DOI] [PubMed] [Google Scholar]
- 181.Machnicki M., Zimecki M., Zagulski T. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 1993;74:433–439. [PMC free article] [PubMed] [Google Scholar]
- 182.Sorimachi K., Akimoto K., Hattori Y., Ieiri T., Niwa A. Activation of macrophages by lactoferrin: Secretion of TNF-alpha, IL-8, and NO. Biochem. Mol. Biol. Int. 1997;43:79–87. doi: 10.1080/15216549700203841. [DOI] [PubMed] [Google Scholar]
- 183.Hwang S.A., Wilk K.M., Bangale Y.A., Kruzel M.L., Actor J.K. Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med. Microbiol. Immunol. 2007;196:171–180. doi: 10.1007/s00430-007-0041-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184.Wang W.P., Iigo M., Sato J., Sekine K., Adachi I., Tsuda H. Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Jpn. J. Cancer Res. 2000;91:1022–1027. doi: 10.1111/j.1349-7006.2000.tb00880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Martínez-García J.J., Canizalez-Roman A., Angulo-Zamudio U.A., Velazquez-Roman J., Flores-Villaseñor H., Valdez-Flores M.A., Rios-Burgueño E., Moran-Portela D., León-Sicairos N. Lactoferrin and metoprolol supplementation increase mouse survival in an experimental LPS-induced sepsis model. Int. J. Pept. Res. Ther. 2022;28:141. doi: 10.1007/s10989-022-10447-5. [DOI] [Google Scholar]
- 186.Fischer R., Debbabi H., Dubarry M., Boyaka P., Tomé D. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 2006;84:303–311. doi: 10.1139/o06-058. [DOI] [PubMed] [Google Scholar]
- 187.Pattamatta U., Mark W., Fiona S., Garrett Q. Bovine lactoferrin promotes corneal wound healing and suppresses IL-1 expression in alkali wounded mouse cornea. Curr. Eye Res. 2013;38:1110–1117. doi: 10.3109/02713683.2013.811259. [DOI] [PubMed] [Google Scholar]
- 188.Mohamed W.A., Schaalan M.F. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-gamma, SIRT-1, and TLR4 downstream signaling pathway. Diabetol. Metab. Syndr. 2018;10:89. doi: 10.1186/s13098-018-0390-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Li L., Ren F., Yun Z., An Y., Wang C., Yan X. Determination of the effects of lactoferrin in a preclinical mouse model of experimental colitis. Mol. Med. Rep. 2013;8:1125–1129. doi: 10.3892/mmr.2013.1632. [DOI] [PubMed] [Google Scholar]
- 190.Togawa J., Nagase H., Tanaka K., Inamori M., Nakajima A., Ueno N., Saito T., Sekihara H. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J. Gastroenterol. Hepatol. 2002;17:1291–1298. doi: 10.1046/j.1440-1746.2002.02868.x. [DOI] [PubMed] [Google Scholar]
- 191.Hu P., Zong Q., Zhao Y., Gu H., Liu Y., Gu F., Liu H.Y., Ahmed A.A., Bao W., Cai D. Lactoferrin attenuates intestinal barrier dysfunction and inflammation by modulating the MAPK pathway and gut microbes in mice. J. Nutr. 2022;152:2451–2460. doi: 10.1093/jn/nxac200. [DOI] [PubMed] [Google Scholar]
- 192.Na Y.J., Han S.B., Kang J.S., Yoon Y.D., Park S.K., Kim H.M., Yang K.H., Joe C.O. Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int. Immunopharmacol. 2004;4:1187–1199. doi: 10.1016/j.intimp.2004.05.009. [DOI] [PubMed] [Google Scholar]
- 193.Li H.Y., Yang H.G., Wu H.M., Yao Q.Q., Zhang Z.Y., Meng Q.S., Fan L.L., Wang J.Q., Zheng N. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J. Dairy Sci. 2021;104:7383–7392. doi: 10.3168/jds.2020-19232. [DOI] [PubMed] [Google Scholar]
- 194.Håversen L., Ohlsson B.G., Hahn-Zoric M., Hanson L.A., Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002;220:83–95. doi: 10.1016/S0008-8749(03)00006-6. [DOI] [PubMed] [Google Scholar]
- 195.Pu T.-Y., Chuang K.-C., Tung M.-C., Yen C.-C., Chen Y.-H., Cidem A., Ko C.-H., Chen W., Chen C.-M. Lactoferrin as a therapeutic agent for attenuating hepatic stellate cell activation in thioacetamide-induced liver fibrosis. Biomed. Pharmacother. 2024;174:116490. doi: 10.1016/j.biopha.2024.116490. [DOI] [PubMed] [Google Scholar]
- 196.Welsh K.J., Hwang S.A., Hunter R.L., Kruzel M.L., Actor J.K. Lactoferrin modulation of mycobacterial cord factor trehalose 6-6′-dimycolate induced granulomatous response. Transl. Res. 2010;156:207–215. doi: 10.1016/j.trsl.2010.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Actor J.K. Lactoferrin: A modulator for immunity against tuberculosis related granulomatous pathology. Mediators Inflamm. 2015;2015:409596. doi: 10.1155/2015/409596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Nakamura A., Kimura F., Tsuji S., Hanada T., Takebayashi A., Takahashi A., Kitazawa J., Morimune A., Amano T., Kushima R., et al. Bovine lactoferrin suppresses inflammatory cytokine expression in endometrial stromal cells in chronic endometritis. J. Reprod. Immunol. 2022;154:103761. doi: 10.1016/j.jri.2022.103761. [DOI] [PubMed] [Google Scholar]
- 199.Togawa J., Nagase H., Tanaka K., Inamori M., Umezawa T., Nakajima A., Naito M., Sato S., Saito T., Sekihara H. Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;283:G187–G195. doi: 10.1152/ajpgi.00331.2001. [DOI] [PubMed] [Google Scholar]
- 200.Valenti P., Catizone A., Pantanella F., Frioni A., Natalizi T., Tendini M., Berlutti F. Lactoferrin decreases inflammatory response by cystic fibrosis bronchial cells invaded with Burkholderia cenocepacia iron-modulated biofilm. Int. J. Immunopathol. Pharmacol. 2011;24:1057–1068. doi: 10.1177/039463201102400423. [DOI] [PubMed] [Google Scholar]
- 201.Berlutti F., Pilloni A., Pietropaoli M., Polimeni A., Valenti P. Lactoferrin and oral diseases: Current status and perspective in periodontitis. Ann. Stomatol. 2011;2:10–18. [PMC free article] [PubMed] [Google Scholar]
- 202.Maritati M., Comar M., Zanotta N., Seraceni S., Trentini A., Corazza F., Vesce F., Contini C. Influence of vaginal lactoferrin administration on amniotic fluid cytokines and its role against inflammatory complications of pregnancy. J. Inflamm. 2017;14:5. doi: 10.1186/s12950-017-0152-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Lepanto M.S., Rosa L., Cutone A., Conte M.P., Paesano R., Valenti P. Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: An interventional study. Front. Immunol. 2018;9:2123. doi: 10.3389/fimmu.2018.02123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Curran C.S., Demick K.P., Mansfield J.M. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol. 2006;242:23–30. doi: 10.1016/j.cellimm.2006.08.006. [DOI] [PubMed] [Google Scholar]
- 205.Liu J., Li B., Lee C., Zhu H., Zheng S., Pierro A. Protective effects of lactoferrin on injured intestinal epithelial cells. J. Pediatr. Surg. 2019;54:2509–2513. doi: 10.1016/j.jpedsurg.2019.08.046. [DOI] [PubMed] [Google Scholar]
- 206.Mattsby-Baltzer I., Roseanu A., Motas C., Elverfors J., Engberg I., Hanson L.Å. Lactoferrin or a fragment thereof inhibits the endotoxin-induced Interleukin-6 response in human monocytic cells. Pediatr. Res. 1996;40:257–262. doi: 10.1203/00006450-199608000-00011. [DOI] [PubMed] [Google Scholar]
- 207.Berlutti F., Schippa S., Morea C., Sarli S., Perfetto B., Donnarumma G., Valenti P. Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem. Cell Biol. 2006;84:351–357. doi: 10.1139/o06-039. [DOI] [PubMed] [Google Scholar]
- 208.Han N., Li H., Li G., Shen Y., Fei M., Nan Y. Effect of bovine lactoferrin as a novel therapeutic agent in a rat model of sepsis-induced acute lung injury. AMB Express. 2019;9:177. doi: 10.1186/s13568-019-0900-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Actor J.K., Hwang S.-A., Olsen M., Zimecki M., Hunter R.L., Kruzel M.L. Lactoferrin immunomodulation of DTH response in mice. Int. Immunopharmacol. 2002;2:475–486. doi: 10.1016/S1567-5769(01)00189-8. [DOI] [PubMed] [Google Scholar]
- 210.Kuhara T., Tanaka A., Yamauchi K., Iwatsuki K. Bovine lactoferrin ingestion protects against inflammation via IL-11 induction in the small intestine of mice with hepatitis. Br. J. Nutr. 2014;111:1801–1810. doi: 10.1017/S0007114513004315. [DOI] [PubMed] [Google Scholar]
- 211.Tung Y.T., Chen H.L., Yen C.C., Lee P.Y., Tsai H.C., Lin M.F., Chen C.M. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci. 2013;96:2095–2106. doi: 10.3168/jds.2012-6153. [DOI] [PubMed] [Google Scholar]
- 212.Kruzel M.L., Harari Y., Mailman D., Actor J.K., Zimecki M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 2002;130:25–31. doi: 10.1046/j.1365-2249.2002.01956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Park S.Y., Jeong A.J., Kim G.Y., Jo A., Lee J.E., Leem S.H., Yoon J.H., Ye S.K., Chung J.W. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J. Microbiol. Biotechnol. 2017;27:1877–1884. doi: 10.4014/jmb.1707.07040. [DOI] [PubMed] [Google Scholar]
- 214.Ogasawara Y., Imase M., Oda H., Wakabayashi H., Ishii K. Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: A possible role in protection against oxidative DNA damage. Int. J. Mol. Sci. 2014;15:1003–1013. doi: 10.3390/ijms15011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Al Zharani M.M., Almuqri E.A., Ahmed M.M., Aljarba N.H., Rudayni H.A., Yaseen K.N., Alkahtani S.H., Nasr F.A., Al Doaiss A.A. Use of lactoferrin supplement as an efficient antioxidant to ameliorate the effects of mercury-induced oxidative stress in male Wistar rats. Biomed. Biotechnol. Res. J. 2024;8:45–52. doi: 10.4103/bbrj.bbrj_262_23. [DOI] [Google Scholar]
- 216.Park Y.G., Jeong J.K., Lee J.H., Lee Y.J., Seol J.W., Kim S.J., Hur T.Y., Jung Y.H., Kang S.J., Park S.Y. Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int. J. Mol. Med. 2013;31:325–330. doi: 10.3892/ijmm.2012.1198. [DOI] [PubMed] [Google Scholar]
- 217.Safaeian L., Zabolian H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol. 2014;2014:943523. doi: 10.1155/2014/943523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Guan S., Zhang S., Liu M., Guo J., Chen Y., Shen X., Deng X., Lu J. Preventive effects of lactoferrin on acute alcohol-induced liver injury via iron chelation and regulation of iron metabolism. J. Dairy Sci. 2024;107:5316–5329. doi: 10.3168/jds.2023-24490. [DOI] [PubMed] [Google Scholar]
- 219.Baveye S., Elass E., Mazurier J., Legrand D. Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils. FEBS Lett. 2000;469:5–8. doi: 10.1016/S0014-5793(00)01243-6. [DOI] [PubMed] [Google Scholar]
- 220.Kim S.E., Choi S., Hong J.Y., Shim K.S., Kim T.H., Park K., Lee S.H. Accelerated osteogenic differentiation of MC3T3-E1 cells by lactoferrin-conjugated nanodiamonds through enhanced anti-oxidant and anti-inflammatory effects. Nanomaterials. 2019;10:50. doi: 10.3390/nano10010050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Actor J.K., Hwang S.A., Kruzel M.L. Lactoferrin as a natural immune modulator. Curr. Pharm. Des. 2009;15:1956–1973. doi: 10.2174/138161209788453202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Anand N., Kanwar R.K., Dubey M.L., Vahishta R.K., Sehgal R., Verma A.K., Kanwar J.R. Effect of lactoferrin protein on red blood cells and macrophages: Mechanism of parasite-host interaction. Drug Des. Devel. Ther. 2015;9:3821–3835. doi: 10.2147/DDDT.S258146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Andres M.T., Viejo-Diaz M., Fierro J.F. Human lactoferrin induces apoptosis-like cell death in Candida albicans: Critical role of K+-channel-mediated K+ efflux. Antimicrob. Agents Chemother. 2008;52:4081–4088. doi: 10.1128/AAC.01597-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Bodur M., Aydogdu G., Ozcelik A.O., Yilmaz E. An in vitro approach to protective effect of lactoferrin on Acrylamide-induced oxidative damage. An. Acad. Bras. Cienc. 2022;94:e20201882. doi: 10.1590/0001-3765202220201882. [DOI] [PubMed] [Google Scholar]
- 225.Fan Y.G., Ge R.L., Ren H., Jia R.J., Wu T.Y., Lei X.F., Wu Z., Zhou X.B., Wang Z.Y. Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice. Pharmacol. Res. 2024;209:107404. doi: 10.1016/j.phrs.2024.107404. [DOI] [PubMed] [Google Scholar]
- 226.Li Z., Zhao Y., Zong Q., Hu P., Bao W., Liu H.Y., Cai D. Lactoferrin restores the deoxynivalenol-impaired spermatogenesis and blood-testis barrier integrity via improving the antioxidant capacity and modifying the cell adhesion and inflammatory response. Antioxidants. 2023;12:152. doi: 10.3390/antiox12010152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Abd El-Rahman S.S., Ashwish N.M., Ali M.E. Appraisal of the pre-emptive effect of lactoferrin against chromium-induced testicular toxicity in male rats. Biol. Trace Elem. Res. 2023;201:5321–5334. doi: 10.1007/s12011-023-03605-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Kruzel M.L., Actor J.K., Zimecki M., Wise J., Płoszaj P., Mirza S., Kruzel M., Hwang S.-A., Ba X., Boldogh I. Novel recombinant human lactoferrin: Differential activation of oxidative stress-related gene expression. J. Biotechnol. 2013;168:666–675. doi: 10.1016/j.jbiotec.2013.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Zheng J., Xie Y., Li F., Zhou Y., Qi L., Liu L., Chen Z. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice. J. Funct. Foods. 2020;65:103736. doi: 10.1016/j.jff.2019.103736. [DOI] [Google Scholar]
- 230.Pan Y., Liu Z., Wang Y., Zhang L., Chua N., Dai L., Chen J., Ho C.L. Evaluation of the anti-inflammatory and anti-oxidative effects of therapeutic human lactoferrin fragments. Front. Bioeng. Biotechnol. 2021;9:779018. doi: 10.3389/fbioe.2021.779018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Kruzel M.L., Actor J.K., Radak Z., Bacsi A., Saavedra-Molina A., Boldogh I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 2010;16:67–79. doi: 10.1177/1753425909105317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 232.Safaeian L., Javanmard S.H., Mollanoori Y., Dana N. Cytoprotective and antioxidant effects of human lactoferrin against H2O2-induced oxidative stress in human umbilical vein endothelial cells. Adv. Biomed. Res. 2015;4:188. doi: 10.4103/2277-9175.164010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 233.Abdel-Wahhab K.G., Ashry M., Hassan L.K., El-Azma M.H., Elqattan G.M., Gadelmawla M.H., Mannaa F.A. Hepatic and immune modulatory effectiveness of lactoferrin loaded selenium nanoparticles on bleomycin induced hepatic injury. Sci. Rep. 2024;14:21066. doi: 10.1038/s41598-024-70894-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Gulmez C., Dalginli K.Y., Atakisi E., Atakisi O. The protective effect of lactoferrin on adenosine deaminase, nitric oxide and liver enzymes in lipopolysaccharide-induced experimental endotoxemia model in rats. Kafkas Univ. Vet. Fak. Derg. 2020;26:801–806. [Google Scholar]
- 235.Mohamed W.A., Salama R.M., Schaalan M.F. A pilot study on the effect of lactoferrin on Alzheimer’s disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed. Pharmacother. 2019;111:714–723. doi: 10.1016/j.biopha.2018.12.118. [DOI] [PubMed] [Google Scholar]
- 236.Maneva A., Taleva B., Maneva L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z. Naturforsch. C J. Biosci. 2003;58:256–262. doi: 10.1515/znc-2003-3-420. [DOI] [PubMed] [Google Scholar]
- 237.Trentini A., Maritati M., Rosta V., Cervellati C., Manfrinato M.C., Hanau S., Greco P., Bonaccorsi G., Bellini T., Contini C. Vaginal lactoferrin administration decreases oxidative stress in the amniotic fluid of pregnant women: An open-label randomized pilot study. Front. Med. 2020;7:555. doi: 10.3389/fmed.2020.00555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 238.El-Hameed S.A., Ibrahim I., Awadin W., El-Shaieb A. Assessment of single and combined administration of ubiquinone and lactoferrin on histopathology, ultrastructure, oxidative stress, and WNT4 expression gene induced by thioacetamide on hepatorenal system of adult male rats. Beni-Suef Univ. J. Basic Appl. Sci. 2024;13:41. doi: 10.1186/s43088-024-00494-w. [DOI] [Google Scholar]
- 239.Farid A.S., El Shemy M.A., Nafie E., Hegazy A.M., Abdelhiee E.Y. Anti-inflammatory, anti-oxidant and hepatoprotective effects of lactoferrin in rats. Drug Chem. Toxicol. 2021;44:286–293. doi: 10.1080/01480545.2019.1585868. [DOI] [PubMed] [Google Scholar]
- 240.Wang Y., Xu C., An Z., Liu J., Feng J. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Technol. 2008;140:326–336. doi: 10.1016/j.anifeedsci.2007.02.006. [DOI] [Google Scholar]
- 241.Fan L., Wang F., Yao Q., Wu H., Wen F., Wang J., Li H., Zheng N. Lactoferrin could alleviate liver injury caused by Maillard reaction products with furan ring through regulating necroptosis pathway. Food Sci. Nutr. 2021;9:3449–3459. doi: 10.1002/fsn3.2254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Li Y.-C., Hsieh C.-C. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model. PLoS ONE. 2014;9:e97341. doi: 10.1371/journal.pone.0097341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Paesano R., Torcia F., Berlutti F., Pacifici E., Ebano V., Moscarini M., Valenti P. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem. Cell Biol. 2006;84:377–380. doi: 10.1139/o06-040. [DOI] [PubMed] [Google Scholar]
- 244.Paesano R., Berlutti F., Pietropaoli M., Goolsbee W., Pacifici E., Valenti P. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. Int. J. Immunopathol. Pharmacol. 2010;23:577–587. doi: 10.1177/039463201002300220. [DOI] [PubMed] [Google Scholar]
- 245.Nappi C., Tommaselli G.A., Morra I., Massaro M., Formisano C., Di Carlo C. Efficacy and tolerability of oral bovine lactoferrin compared to ferrous sulfate in pregnant women with iron deficiency anemia: A prospective controlled randomized study. Acta Obstet. Gynecol. Scand. 2009;88:1031–1035. doi: 10.1080/00016340903117994. [DOI] [PubMed] [Google Scholar]
- 246.Rosa L., Lepanto M.S., Cutone A., Siciliano R.A., Paesano R., Costi R., Musci G., Valenti P. Influence of oral administration mode on the efficacy of commercial bovine Lactoferrin against iron and inflammatory homeostasis disorders. Biometals. 2020;33:159–168. doi: 10.1007/s10534-020-00236-2. [DOI] [PubMed] [Google Scholar]
- 247.Paesano R., Pacifici E., Benedetti S., Berlutti F., Frioni A., Polimeni A., Valenti P. Safety and efficacy of lactoferrin versus ferrous sulphate in curing iron deficiency and iron deficiency anaemia in hereditary thrombophilia pregnant women: An interventional study. Biometals. 2014;27:999–1006. doi: 10.1007/s10534-014-9723-x. [DOI] [PubMed] [Google Scholar]
- 248.Tsuda H., Sekine K., Fujita K.-i., Iigo M. Cancer prevention by bovine lactoferrin and underlying mechanisms a review of experimental and clinical studies. Biochem. Cell Biol. 2002;80:131–136. doi: 10.1139/o01-239. [DOI] [PubMed] [Google Scholar]
- 249.Kozu T., Iinuma G., Ohashi Y., Saito Y., Akasu T., Saito D., Alexander D.B., Iigo M., Kakizoe T., Tsuda H. Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial. Cancer Prev. Res. 2009;2:975–983. doi: 10.1158/1940-6207.CAPR-08-0208. [DOI] [PubMed] [Google Scholar]
- 250.Vishwanath-Deutsch R., Dallas D.C., Besada-Lombana P., Katz L., Conze D., Kruger C., Clark A.J., Peterson R., Malinczak C.A. A review of the safety evidence on recombinant human lactoferrin for use as a food ingredient. Food Chem. Toxicol. 2024;189:114727. doi: 10.1016/j.fct.2024.114727. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No new data were created or analyzed in this study.


