Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Oct;108(10):919–930. doi: 10.1289/ehp.00108919

Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores.

A F Tayabali 1, V L Seligy 1
PMCID: PMC1240123  PMID: 11049810

Abstract

Most contemporary bioinsecticides are derived from scaled-up cultures of Bacillus thuringiensis subspecies israelensis (Bti) and kurstaki (Btk), whose particulate fractions contain mostly B. thuringiensis spores (> 10(12)/L) and proteinaceous aggregates, including crystal-like parasporal inclusion bodies (PIB). Based on concerns over relatedness to B. cereus-group pathogens, we conducted extensive testing of B. thuringiensis (BT) products and their subfractions using seven human cell types. The Bti/Btk products generated nonspecific cytotoxicities involving loss in bioreduction, cell rounding, blebbing and detachment, degradation of immunodetectable proteins, and cytolysis. Their threshold dose (Dt approximately equal.5 times 10(-14)% BT product/target cell) equated to a single spore and a target cell half-life (tLD(50)) of approximately 16 hr. At Dts > 10(4), the tLD(50) rapidly shifted to < 4 hr; with antibiotic present, no component, including PIB-related [delta]-endotoxins, was cytolytic up to an equivalent of approximately 10(9 )Dt. The cytolytic agent(s) within the Bti/Btk-vegetative cell exoprotein (VCP) pool is an early spore outgrowth product identical to that of B. cereus and acting possibly by arresting protein synthesis. No cytolytic effects were seen with VCP from B. subtilis and Escherichia coli. These data, including recent epidemiologic work indicate that spore-containing BT products have an inherent capacity to lyse human cells in free and interactive forms and may also act as immune sensitizers. To critically impact at the whole body level, the exposure outcome would have to be an uncontrolled infection arising from intake of Btk/Bti spores. For humans, such a condition would be rare, arising possibly in equally rare exposure scenarios involving large doses of spores and individuals with weak or impaired microbe-clearance capacities and/or immune response systems.

Full Text

The Full Text of this article is available as a PDF (266.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A., Granum P. E., Rönner U. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol. 1998 Jan 6;39(1-2):93–99. doi: 10.1016/s0168-1605(97)00121-9. [DOI] [PubMed] [Google Scholar]
  2. Ang B. J., Nickerson K. W. Purification of the protein crystal from Bacillus thuringiensis by zonal gradient centrifugation. Appl Environ Microbiol. 1978 Oct;36(4):625–626. doi: 10.1128/aem.36.4.625-626.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beattie S. H., Williams A. G. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett Appl Microbiol. 1999 Mar;28(3):221–225. doi: 10.1046/j.1365-2672.1999.00498.x. [DOI] [PubMed] [Google Scholar]
  4. Bernet-Camard M. F., Coconnier M. H., Hudault S., Servin A. L. Differential expression of complement proteins and regulatory decay accelerating factor in relation to differentiation of cultured human colon adenocarcinoma cell lines. Gut. 1996 Feb;38(2):248–253. doi: 10.1136/gut.38.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein I. L., Bernstein J. A., Miller M., Tierzieva S., Bernstein D. I., Lummus Z., Selgrade M. K., Doerfler D. L., Seligy V. L. Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environ Health Perspect. 1999 Jul;107(7):575–582. doi: 10.1289/ehp.99107575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Braun L., Ohayon H., Cossart P. The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol. 1998 Mar;27(5):1077–1087. doi: 10.1046/j.1365-2958.1998.00750.x. [DOI] [PubMed] [Google Scholar]
  7. Cersini A., Salvia A. M., Bernardini M. L. Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants. Infect Immun. 1998 Feb;66(2):549–557. doi: 10.1128/iai.66.2.549-557.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coconnier M. H., Klaenhammer T. R., Kernéis S., Bernet M. F., Servin A. L. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol. 1992 Jun;58(6):2034–2039. doi: 10.1128/aem.58.6.2034-2039.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Czuba M., Tajbakhsh S., Walker T., Dove M. J., Johnson B. F., Seligy V. L. Plaque assay and replication of Tipula iridescent virus in Spodoptera frugiperda ovarian cells. Res Virol. 1994 Sep-Oct;145(5):319–330. doi: 10.1016/s0923-2516(07)80037-9. [DOI] [PubMed] [Google Scholar]
  10. Damgaard P. H., Granum P. E., Bresciani J., Torregrossa M. V., Eilenberg J., Valentino L. Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol Med Microbiol. 1997 May;18(1):47–53. doi: 10.1111/j.1574-695X.1997.tb01026.x. [DOI] [PubMed] [Google Scholar]
  11. Damgaard P. H., Larsen H. D., Hansen B. M., Bresciani J., Jørgensen K. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett Appl Microbiol. 1996 Sep;23(3):146–150. doi: 10.1111/j.1472-765x.1996.tb00051.x. [DOI] [PubMed] [Google Scholar]
  12. Drobniewski F. A., Ellar D. J. Purification and properties of a 28-kilodalton hemolytic and mosquitocidal protein toxin of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2. J Bacteriol. 1989 Jun;171(6):3060–3067. doi: 10.1128/jb.171.6.3060-3067.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubois N. R. Laboratory batch production of Bacillus thuringiensis spores and crystals. Appl Microbiol. 1968 Jul;16(7):1098–1099. doi: 10.1128/am.16.7.1098-1099.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Estruch J. J., Warren G. W., Mullins M. A., Nye G. J., Craig J. A., Koziel M. G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5389–5394. doi: 10.1073/pnas.93.11.5389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaillard J. L., Finlay B. B. Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun. 1996 Apr;64(4):1299–1308. doi: 10.1128/iai.64.4.1299-1308.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gill S. S., Hornung J. M. Cytolytic activity of Bacillus thuringiensis proteins to insect and mammalian cell lines. J Invertebr Pathol. 1987 Jul;50(1):16–25. doi: 10.1016/0022-2011(87)90140-6. [DOI] [PubMed] [Google Scholar]
  17. Green M., Heumann M., Sokolow R., Foster L. R., Bryant R., Skeels M. Public health implications of the microbial pesticide Bacillus thuringiensis: an epidemiological study, Oregon, 1985-86. Am J Public Health. 1990 Jul;80(7):848–852. doi: 10.2105/ajph.80.7.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol. 2000 Jun;66(6):2627–2630. doi: 10.1128/aem.66.6.2627-2630.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hernandez E., Ramisse F., Cruel T., le Vagueresse R., Cavallo J. D. Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol Med Microbiol. 1999 May;24(1):43–47. doi: 10.1111/j.1574-695X.1999.tb01263.x. [DOI] [PubMed] [Google Scholar]
  20. Hernandez E., Ramisse F., Ducoureau J. P., Cruel T., Cavallo J. D. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol. 1998 Jul;36(7):2138–2139. doi: 10.1128/jcm.36.7.2138-2139.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hostacká A., Kosiarová A., Majtán V., Kohútová S. Toxic properties of Bacillus cereus strains isolated from different foodstuffs. Zentralbl Bakteriol. 1992 Feb;276(3):303–312. [PubMed] [Google Scholar]
  22. Hoult B., Tuxford A. F. Toxin production by Bacillus pumilus. J Clin Pathol. 1991 Jun;44(6):455–458. doi: 10.1136/jcp.44.6.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jackson S. G., Goodbrand R. B., Ahmed R., Kasatiya S. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol. 1995 Aug;21(2):103–105. doi: 10.1111/j.1472-765x.1995.tb01017.x. [DOI] [PubMed] [Google Scholar]
  24. Jackson S. G. Rapid screening test for enterotoxin-producing Bacillus cereus. J Clin Microbiol. 1993 Apr;31(4):972–974. doi: 10.1128/jcm.31.4.972-974.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jung H. C., Eckmann L., Yang S. K., Panja A., Fierer J., Morzycka-Wroblewska E., Kagnoff M. F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995 Jan;95(1):55–65. doi: 10.1172/JCI117676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kernéis S., Chauvière G., Darfeuille-Michaud A., Aubel D., Coconnier M. H., Joly B., Servin A. L. Expression of receptors for enterotoxigenic Escherichia coli during enterocytic differentiation of human polarized intestinal epithelial cells in culture. Infect Immun. 1992 Jul;60(7):2572–2580. doi: 10.1128/iai.60.7.2572-2580.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kostichka K., Warren G. W., Mullins M., Mullins A. D., Palekar N. V., Craig J. A., Koziel M. G., Estruch J. J. Cloning of a cryV-type insecticidal protein gene from Bacillus thuringiensis: the cryV-encoded protein is expressed early in stationary phase. J Bacteriol. 1996 Apr;178(7):2141–2144. doi: 10.1128/jb.178.7.2141-2144.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Krueger K. M., Barbieri J. T. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev. 1995 Jan;8(1):34–47. doi: 10.1128/cmr.8.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lu X., Seligy V. L. Mitochondrial RNA abundance in differentiating human colonic epithelial tumor cells estimated through use of a mitochondrial genome map. Gene. 1993 Sep 15;131(2):217–225. doi: 10.1016/0378-1119(93)90296-f. [DOI] [PubMed] [Google Scholar]
  30. Lu X., Walker T., MacManus J. P., Seligy V. L. Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation. Cancer Res. 1992 Jul 1;52(13):3718–3725. [PubMed] [Google Scholar]
  31. Mizuki E., Ohba M., Akao T., Yamashita S., Saitoh H., Park Y. S. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol. 1999 Mar;86(3):477–486. doi: 10.1046/j.1365-2672.1999.00692.x. [DOI] [PubMed] [Google Scholar]
  32. Samples J. R., Buettner H. Corneal ulcer caused by a biologic insecticide (Bacillus thuringiensis). Am J Ophthalmol. 1983 Feb;95(2):258–260. doi: 10.1016/0002-9394(83)90028-4. [DOI] [PubMed] [Google Scholar]
  33. Segal E. D., Shon J., Tompkins L. S. Characterization of Helicobacter pylori urease mutants. Infect Immun. 1992 May;60(5):1883–1889. doi: 10.1128/iai.60.5.1883-1889.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Seligy V, V, Rancourt J. Antibiotic MIC/MBC analysis of Bacillus-based commercial insecticides: use of bioreduction and DNA-based assays. J Ind Microbiol Biotechnol. 1999 Jun;22(6):565–574. doi: 10.1038/sj.jim.2900625. [DOI] [PubMed] [Google Scholar]
  35. Seto N. O., Seligy V. L. Genetically tagged putative differentiation intermediates derived from undifferentiated HT29 human colon carcinoma cells. Cell Mol Biol (Noisy-le-grand) 1999 Mar;45(2):203–209. [PubMed] [Google Scholar]
  36. Smith G. P., Merrick J. D., Bone E. J., Ellar D. J. Mosquitocidal activity of the CryIC delta-endotoxin from Bacillus thuringiensis subsp. aizawai. Appl Environ Microbiol. 1996 Feb;62(2):680–684. doi: 10.1128/aem.62.2.680-684.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steiner T. S., Lima A. A., Nataro J. P., Guerrant R. L. Enteroaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J Infect Dis. 1998 Jan;177(1):88–96. doi: 10.1086/513809. [DOI] [PubMed] [Google Scholar]
  38. Tayabali A. F., Seligy V. L. Cell integrity markers for in vitro evaluation of cytotoxic responses to bacteria-containing commercial insecticides. Ecotoxicol Environ Saf. 1997 Jul;37(2):152–162. doi: 10.1006/eesa.1997.1525. [DOI] [PubMed] [Google Scholar]
  39. Tayabali A. F., Seligy V. L. Semiautomated quantification of cytotoxic damage induced in cultured insect cells exposed to commercial Bacillus thuringiensis biopesticides. J Appl Toxicol. 1995 Sep-Oct;15(5):365–373. doi: 10.1002/jat.2550150505. [DOI] [PubMed] [Google Scholar]
  40. Thomas W. E., Ellar D. J. Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci. 1983 Mar;60:181–197. doi: 10.1242/jcs.60.1.181. [DOI] [PubMed] [Google Scholar]
  41. Vachon V., Paradis M. J., Marsolais M., Schwartz J. L., Laprade R. Ionic permeabilities induced by Bacillus thuringiensis in Sf9 cells. J Membr Biol. 1995 Nov;148(1):57–63. doi: 10.1007/BF00234156. [DOI] [PubMed] [Google Scholar]
  42. Weikel C. S., Grieco F. D., Reuben J., Myers L. L., Sack R. B. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992 Feb;60(2):321–327. doi: 10.1128/iai.60.2.321-327.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Whitehouse C. A., Balbo P. B., Pesci E. C., Cottle D. L., Mirabito P. M., Pickett C. L. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun. 1998 May;66(5):1934–1940. doi: 10.1128/iai.66.5.1934-1940.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhu Y. S., Brookes A., Carlson K., Filner P. Separation of Protein Crystals from Spores of Bacillus thuringiensis by Ludox Gradient Centrifugation. Appl Environ Microbiol. 1989 May;55(5):1279–1281. doi: 10.1128/aem.55.5.1279-1281.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES