Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Oct;108(10):949–954. doi: 10.1289/ehp.00108949

Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]-aminolevulinic acid dehydratase genes.

B S Schwartz 1, B K Lee 1, G S Lee 1, W F Stewart 1, D Simon 1, K Kelsey 1, A C Todd 1
PMCID: PMC1240127  PMID: 11049814

Abstract

A cross-sectional study was performed to evaluate the influence of polymorphisms in the [delta]-aminolevulinic acid dehydratase (ALAD) and vitamin D receptor (VDR) genes on blood lead, tibia lead, and dimercaptosuccinic acid (DMSA)-chelatable lead levels in 798 lead workers and 135 controls without occupational lead exposure in the Republic of Korea. Tibia lead was assessed with a 30-min measurement by (109)Cd-induced K-shell X-ray fluorescence, and DMSA-chelatable lead was estimated as 4-hr urinary lead excretion after oral administration of 10 mg/kg DMSA. The primary goals of the analysis were to examine blood lead, tibia lead, and DMSA-chelatable lead levels by ALAD and VDR genotypes, controlling for covariates; and to evaluate whether ALAD and VDR genotype modified relations among the different lead biomarkers. There was a wide range of blood lead (4-86 microg/dL), tibia lead (-7-338 microg Pb/g bone mineral), and DMSA-chelatable lead (4.8-2,103 microg) levels among lead workers. Among lead workers, 9.9% (n = 79) were heterozygous for the ALAD(2) allele and there were no homozygotes. For VDR, 10.7% (n = 85) had the Bb genotype, and 0.5% (n = 4) had the BB genotype. Although the ALAD and VDR genes are located on different chromosomes, lead workers homozygous for the ALAD(1) allele were much less likely to have the VDR bb genotype (crude odds ratio = 0.29, 95% exact confidence interval = 0.06-0.91). In adjusted analyses, subjects with the ALAD(2) allele had higher blood lead levels (on average, 2.9 microg/dL, p = 0.07) but no difference in tibia lead levels compared with subjects without the allele. In adjusted analyses, lead workers with the VDR B allele had significantly (p < 0.05) higher blood lead levels (on average, 4.2 microg/dL), chelatable lead levels (on average, 37.3 microg), and tibia lead levels (on average, 6.4 microg/g) than did workers with the VDR bb genotype. The current data confirm past observations that the ALAD gene modifies the toxicokinetics of lead and also provides new evidence that the VDR gene does so as well.

Full Text

The Full Text of this article is available as a PDF (77.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander B. H., Checkoway H., Costa-Mallen P., Faustman E. M., Woods J. S., Kelsey K. T., van Netten C., Costa L. G. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers. Environ Health Perspect. 1998 Apr;106(4):213–216. doi: 10.1289/ehp.98106213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barger-Lux M. J., Heaney R. P., Hayes J., DeLuca H. F., Johnson M. L., Gong G. Vitamin D receptor gene polymorphism, bone mass, body size, and vitamin D receptor density. Calcif Tissue Int. 1995 Aug;57(2):161–162. doi: 10.1007/BF00298438. [DOI] [PubMed] [Google Scholar]
  3. Battistuzzi G., Petrucci R., Silvagni L., Urbani F. R., Caiola S. delta-Aminolevulinate dehydrase: a new genetic polymorphism in man. Ann Hum Genet. 1981 Jul;45(Pt 3):223–229. doi: 10.1111/j.1469-1809.1981.tb00333.x. [DOI] [PubMed] [Google Scholar]
  4. Bergdahl I. A., Gerhardsson L., Schütz A., Desnick R. J., Wetmur J. G., Skerfving S. Delta-aminolevulinic acid dehydratase polymorphism: influence on lead levels and kidney function in humans. Arch Environ Health. 1997 Mar-Apr;52(2):91–96. doi: 10.1080/00039899709602870. [DOI] [PubMed] [Google Scholar]
  5. Bergdahl I. A., Grubb A., Schütz A., Desnick R. J., Wetmur J. G., Sassa S., Skerfving S. Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol. 1997 Oct;81(4):153–158. doi: 10.1111/j.1600-0773.1997.tb02061.x. [DOI] [PubMed] [Google Scholar]
  6. Blumberg W. E., Eisinger J., Lamola A. A., Zuckerman D. M. Zinc protoporphyrin level in blood determined by a portable hematofluorometer: a screening device for lead poisoning. J Lab Clin Med. 1977 Apr;89(4):712–723. [PubMed] [Google Scholar]
  7. Cooper G. S., Umbach D. M. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res. 1996 Dec;11(12):1841–1849. doi: 10.1002/jbmr.5650111203. [DOI] [PubMed] [Google Scholar]
  8. Fleming D. E., Chettle D. R., Wetmur J. G., Desnick R. J., Robin J. P., Boulay D., Richard N. S., Gordon C. L., Webber C. E. Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environ Res. 1998 Apr;77(1):49–61. doi: 10.1006/enrs.1997.3818. [DOI] [PubMed] [Google Scholar]
  9. Fullmer C. S. Intestinal interactions of lead and calcium. Neurotoxicology. 1992 Winter;13(4):799–807. [PubMed] [Google Scholar]
  10. Fullmer C. S. Intestinal lead and calcium absorption: effect of 1,25-dihydroxycholecalciferol and lead status. Proc Soc Exp Biol Med. 1990 Jul;194(3):258–264. doi: 10.3181/00379727-194-43088. [DOI] [PubMed] [Google Scholar]
  11. Heinegård D., Tiderström G. Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta. 1973 Feb 12;43(3):305–310. doi: 10.1016/0009-8981(73)90466-x. [DOI] [PubMed] [Google Scholar]
  12. Kim R., Aro A., Rotnitzky A., Amarasiriwardena C., Hu H. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol. 1995 Sep;40(9):1475–1485. doi: 10.1088/0031-9155/40/9/007. [DOI] [PubMed] [Google Scholar]
  13. Lee B. K., Schwartz B. S., Stewart W., Ahn K. D. Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med. 1995 Jan;52(1):13–19. doi: 10.1136/oem.52.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrison N. A., Qi J. C., Tokita A., Kelly P. J., Crofts L., Nguyen T. V., Sambrook P. N., Eisman J. A. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284–287. doi: 10.1038/367284a0. [DOI] [PubMed] [Google Scholar]
  15. Morrison N. A., Yeoman R., Kelly P. J., Eisman J. A. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6665–6669. doi: 10.1073/pnas.89.15.6665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Potluri V. R., Astrin K. H., Wetmur J. G., Bishop D. F., Desnick R. J. Human delta-aminolevulinate dehydratase: chromosomal localization to 9q34 by in situ hybridization. Hum Genet. 1987 Jul;76(3):236–239. doi: 10.1007/BF00283614. [DOI] [PubMed] [Google Scholar]
  17. Schwartz B. S., Lee B. K., Stewart W., Ahn K. D., Springer K., Kelsey K. Associations of delta-aminolevulinic acid dehydratase genotype with plant, exposure duration, and blood lead and zinc protoporphyrin levels in Korean lead workers. Am J Epidemiol. 1995 Oct 1;142(7):738–745. doi: 10.1093/oxfordjournals.aje.a117705. [DOI] [PubMed] [Google Scholar]
  18. Schwartz B. S., Lee B. K., Stewart W., Sithisarankul P., Strickland P. T., Ahn K. D., Kelsey K. delta-Aminolevulinic acid dehydratase genotype modifies four hour urinary lead excretion after oral administration of dimercaptosuccinic acid. Occup Environ Med. 1997 Apr;54(4):241–246. doi: 10.1136/oem.54.4.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz B. S., Stewart W. F., Kelsey K. T., Simon D., Park S., Links J. M., Todd A. C. Associations of tibial lead levels with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers. Environ Health Perspect. 2000 Mar;108(3):199–203. doi: 10.1289/ehp.00108199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sithisarankul P., Schwartz B. S., Lee B. K., Kelsey K. T., Strickland P. T. Aminolevulinic acid dehydratase genotype mediates plasma levels of the neurotoxin, 5-aminolevulinic acid, in lead-exposed workers. Am J Ind Med. 1997 Jul;32(1):15–20. doi: 10.1002/(sici)1097-0274(199707)32:1<15::aid-ajim2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  21. Smith C. M., DeLuca H. F., Tanaka Y., Mahaffey K. R. Effect of lead ingestion on functions of vitamin D and its metabolites. J Nutr. 1981 Aug;111(8):1321–1329. doi: 10.1093/jn/111.8.1321. [DOI] [PubMed] [Google Scholar]
  22. Smith C. M., Wang X., Hu H., Kelsey K. T. A polymorphism in the delta-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect. 1995 Mar;103(3):248–253. doi: 10.1289/ehp.95103248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taymans S. E., Pack S., Pak E., Orban Z., Barsony J., Zhuang Z., Stratakis C. A. The human vitamin D receptor gene (VDR) is localized to region 12cen-q12 by fluorescent in situ hybridization and radiation hybrid mapping: genetic and physical VDR map. J Bone Miner Res. 1999 Jul;14(7):1163–1166. doi: 10.1359/jbmr.1999.14.7.1163. [DOI] [PubMed] [Google Scholar]
  24. Thomas W. J., Collins T. M. Comparison of venipuncture blood counts with microcapillary measurements in screening for anemia in one-year-old infants. J Pediatr. 1982 Jul;101(1):32–35. doi: 10.1016/s0022-3476(82)80175-3. [DOI] [PubMed] [Google Scholar]
  25. Todd A. C. Contamination of in vivo bone-lead measurements. Phys Med Biol. 2000 Jan;45(1):229–240. doi: 10.1088/0031-9155/45/1/316. [DOI] [PubMed] [Google Scholar]
  26. Todd A. C., McNeill F. E. In vivo measurements of lead in bone using a 109Cd 'spot' source. Basic Life Sci. 1993;60:299–302. doi: 10.1007/978-1-4899-1268-8_66. [DOI] [PubMed] [Google Scholar]
  27. Wetmur J. G., Lehnert G., Desnick R. J. The delta-aminolevulinate dehydratase polymorphism: higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res. 1991 Dec;56(2):109–119. doi: 10.1016/s0013-9351(05)80001-5. [DOI] [PubMed] [Google Scholar]
  28. Ziemsen B., Angerer J., Lehnert G., Benkmann H. G., Goedde H. W. Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health. 1986;58(3):245–247. doi: 10.1007/BF00432107. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES