Abstract
Whether exposure of humans to extremely low frequency electromagnetic fields (ELF-EMF) can cause cancer is controversial and therefore needs further research. We used a Friend erythroleukemia cell line that can be chemically induced to differentiate to determine whether ELF-EMF could alter proliferation and differentiation in these cells in a manner similar to that of a chemical tumor promoter. Exposure of this cell line to 60 Hz ELF-EMF resulted in a dose dependent inhibition of differentiation, with maximal inhibition peaking at 40% and 40 mG (4 microT). ELF-EMF at 10 mG (1.0 microT) and 25 mG (2.5 microT) inhibited differentiation at 0 and 20%, respectively. ELF-EMF at 1.0 (100) and 10.0 G (1,000 microT) stimulated cell proliferation 50% above the sham-treated cells. The activity of telomerase, a marker of undifferentiated cells, decreased 100[times] when the cells were induced to differentiate under sham conditions, but when the cells were exposed to 0.5 G (50 microT) there was only a 10[times] decrease. In summary, ELF-EMF can partially block the differentiation of Friend erythroleukemia cells, and this results in a larger population of cells remaining in the undifferentiated, proliferative state, which is similar to the published results of Friend erythroleukemia cells treated with chemical-tumor promoters.
Full Text
The Full Text of this article is available as a PDF (124.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackman C. F., Benane S. G., House D. E. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells. Bioelectromagnetics. 1995;16(6):387–395. doi: 10.1002/bem.2250160607. [DOI] [PubMed] [Google Scholar]
- Blackman C. F., Blanchard J. P., Benane S. G., House D. E. Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics. 1994;15(3):239–260. doi: 10.1002/bem.2250150307. [DOI] [PubMed] [Google Scholar]
- Blackman C. F., Blanchard J. P., Benane S. G., House D. E. The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J. 1995 Apr;9(7):547–551. doi: 10.1096/fasebj.9.7.7737464. [DOI] [PubMed] [Google Scholar]
- Boorman G. A., Anderson L. E., Morris J. E., Sasser L. B., Mann P. C., Grumbein S. L., Hailey J. R., McNally A., Sills R. C., Haseman J. K. Effect of 26 week magnetic field exposures in a DMBA initiation-promotion mammary gland model in Sprague-Dawley rats. Carcinogenesis. 1999 May;20(5):899–904. doi: 10.1093/carcin/20.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bracken M. B., Belanger K., Hellenbrand K., Addesso K., Patel S., Triche E., Leaderer B. P. Correlates of residential wiring code used in studies of health effects of residential electromagnetic fields. Am J Epidemiol. 1998 Sep 1;148(5):467–474. doi: 10.1093/oxfordjournals.aje.a009672. [DOI] [PubMed] [Google Scholar]
- Bursch W., Lauer B., Timmermann-Trosiener I., Barthel G., Schuppler J., Schulte-Hermann R. Controlled death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis. 1984 Apr;5(4):453–458. doi: 10.1093/carcin/5.4.453. [DOI] [PubMed] [Google Scholar]
- Bursch W., Oberhammer F., Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci. 1992 Jun;13(6):245–251. doi: 10.1016/0165-6147(92)90077-j. [DOI] [PubMed] [Google Scholar]
- Dockerty J. D., Elwood J. M., Skegg D. C., Herbison G. P. Electromagnetic field exposures and childhood cancers in New Zealand. Cancer Causes Control. 1998 May;9(3):299–309. doi: 10.1023/a:1008825220759. [DOI] [PubMed] [Google Scholar]
- Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
- Fu W., Begley J. G., Killen M. W., Mattson M. P. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem. 1999 Mar 12;274(11):7264–7271. doi: 10.1074/jbc.274.11.7264. [DOI] [PubMed] [Google Scholar]
- Giroldi L., Hollstein M., Yamasaki H. Cellular-oncogene expression in Friend erythroleukemia cells: relationship to differentiation, commitment and TPA effects. Carcinogenesis. 1988 May;9(5):817–821. doi: 10.1093/carcin/9.5.817. [DOI] [PubMed] [Google Scholar]
- Imbra R. J., Karin M. Phorbol ester induces the transcriptional stimulatory activity of the SV40 enhancer. Nature. 1986 Oct 9;323(6088):555–558. doi: 10.1038/323555a0. [DOI] [PubMed] [Google Scholar]
- Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
- Li I. C., Chang C. C., Trosko J. E. Thymidylate synthetase gene as a quantitative mutation marker in Chinese hamster cells. Mutat Res. 1990 Mar;243(3):233–239. doi: 10.1016/0165-7992(90)90096-3. [DOI] [PubMed] [Google Scholar]
- Lin H., Head M., Blank M., Han L., Jin M., Goodman R. Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem. 1998 May 1;69(2):181–188. doi: 10.1002/(sici)1097-4644(19980501)69:2<181::aid-jcb8>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
- Lin H., Opler M., Head M., Blank M., Goodman R. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J Cell Biochem. 1997 Sep 15;66(4):482–488. doi: 10.1002/(sici)1097-4644(19970915)66:4<482::aid-jcb7>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- McBride M. L., Gallagher R. P., Thériault G., Armstrong B. G., Tamaro S., Spinelli J. J., Deadman J. E., Fincham S., Robson D., Choi W. Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol. 1999 May 1;149(9):831–842. doi: 10.1093/oxfordjournals.aje.a009899. [DOI] [PubMed] [Google Scholar]
- McCann J., Dietrich F., Rafferty C., Martin A. O. A critical review of the genotoxic potential of electric and magnetic fields. Mutat Res. 1993 Jul;297(1):61–95. doi: 10.1016/0165-1110(93)90008-b. [DOI] [PubMed] [Google Scholar]
- McCann J., Dietrich F., Rafferty C. The genotoxic potential of electric and magnetic fields: an update. Mutat Res. 1998 Aug;411(1):45–86. doi: 10.1016/s1383-5742(98)00006-4. [DOI] [PubMed] [Google Scholar]
- Miyakoshi J., Koji Y., Wakasa T., Takebe H. Long-term exposure to a magnetic field (5 mT at 60 Hz) increases X-ray-induced mutations. J Radiat Res. 1999 Mar;40(1):13–21. doi: 10.1269/jrr.40.13. [DOI] [PubMed] [Google Scholar]
- Phillips J. L., Haggren W., Thomas W. J., Ishida-Jones T., Adey W. R. Magnetic field-induced changes in specific gene transcription. Biochim Biophys Acta. 1992 Sep 24;1132(2):140–144. doi: 10.1016/0167-4781(92)90004-j. [DOI] [PubMed] [Google Scholar]
- Schenk P. W., Snaar-Jagalska B. E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta. 1999 Feb 4;1449(1):1–24. doi: 10.1016/s0167-4889(98)00178-5. [DOI] [PubMed] [Google Scholar]
- Stevens R. G., Davis S. The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect. 1996 Mar;104 (Suppl 1):135–140. doi: 10.1289/ehp.96104s1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teeguarden J. G., Dragan Y. P., Singh J., Vaughan J., Xu Y. H., Goldsworthy T., Pitot H. C. Quantitative analysis of dose- and time-dependent promotion of four phenotypes of altered hepatic foci by 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Sprague-Dawley rats. Toxicol Sci. 1999 Oct;51(2):211–223. doi: 10.1093/toxsci/51.2.211. [DOI] [PubMed] [Google Scholar]
- Trosko J. E., Chang C. C., Medcalf A. Mechanisms of tumor promotion: potential role of intercellular communication. Cancer Invest. 1983;1(6):511–526. doi: 10.3109/07357908309020276. [DOI] [PubMed] [Google Scholar]
- Trosko J. E., Goodman J. I. Intercellular communication may facilitate apoptosis: implications for tumor promotion. Mol Carcinog. 1994 Sep;11(1):8–12. doi: 10.1002/mc.2940110103. [DOI] [PubMed] [Google Scholar]
- Trosko J. E. Human health consequences of environmentally-modulated gene expression: potential roles of ELF-EMF induced epigenetic versus mutagenic mechanisms of disease. Bioelectromagnetics. 2000 Jul;21(5):402–406. [PubMed] [Google Scholar]
- Walleczek J., Shiu E. C., Hahn G. M. Increase in radiation-induced HPRT gene mutation frequency after nonthermal exposure to nonionizing 60 Hz electromagnetic fields. Radiat Res. 1999 Apr;151(4):489–497. [PubMed] [Google Scholar]
- Weinstein I. B., Gattoni-Celli S., Kirschmeier P., Lambert M., Hsiao W., Backer J., Jeffrey A. Multistage carcinogenesis involves multiple genes and multiple mechanisms. J Cell Physiol Suppl. 1984;3:127–137. doi: 10.1002/jcp.1041210416. [DOI] [PubMed] [Google Scholar]
- Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979 Mar;109(3):273–284. doi: 10.1093/oxfordjournals.aje.a112681. [DOI] [PubMed] [Google Scholar]
- Yamasaki H., Fibach E., Nudel U., Weinstein I. B., Rifkind R. A., Marks P. A. Tumor promoters inhibit spontaneous and induced differentiation of murine erythroleukemia cells in culture. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3451–3455. doi: 10.1073/pnas.74.8.3451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamasaki H., Martel N., Fusco A., Ostertag W. Continuous suppression of globin gene expression and differentiation of Friend erythroleukemia cells by phorbol 12-myristate 13-acetate (PMA) despite the loss of PMA binding sites by down regulation. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2075–2079. doi: 10.1073/pnas.81.7.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamasaki H., Saint-Vincent L., Martel N. Long-term effect of a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, on induced differentiation of Friend leukemia cells. Cancer Res. 1980 Oct;40(10):3780–3785. [PubMed] [Google Scholar]