Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Oct;108(10):979–982. doi: 10.1289/ehp.00108979

Levels of seven urinary phthalate metabolites in a human reference population.

B C Blount 1, M J Silva 1, S P Caudill 1, L L Needham 1, J L Pirkle 1, E J Sampson 1, G W Lucier 1, R J Jackson 1, J W Brock 1
PMCID: PMC1240132  PMID: 11049818

Abstract

Using a novel and highly selective technique, we measured monoester metabolites of seven commonly used phthalates in urine samples from a reference population of 289 adult humans. This analytical approach allowed us to directly measure the individual phthalate metabolites responsible for the animal reproductive and developmental toxicity while avoiding contamination from the ubiquitous parent compounds. The monoesters with the highest urinary levels found were monoethyl phthalate (95th percentile, 3,750 ppb, 2,610 microg/g creatinine), monobutyl phthalate (95th percentile, 294 ppb, 162 microg/g creatinine), and monobenzyl phthalate (95th percentile, 137 ppb, 92 microg/g creatinine), reflecting exposure to diethyl phthalate, dibutyl phthalate, and benzyl butyl phthalate. Women of reproductive age (20-40 years) were found to have significantly higher levels of monobutyl phthalate, a reproductive and developmental toxicant in rodents, than other age/gender groups (p < 0.005). Current scientific and regulatory attention on phthalates has focused almost exclusively on health risks from exposure to only two phthalates, di-(2-ethylhexyl) phthalate and di-isononyl phthalate. Our findings strongly suggest that health-risk assessments for phthalate exposure in humans should include diethyl, dibutyl, and benzyl butyl phthalates.

Full Text

The Full Text of this article is available as a PDF (75.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albro P. W., Corbett J. T., Schroeder J. L., Jordan S., Matthews H. B. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect. 1982 Nov;45:19–25. doi: 10.1289/ehp.824519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albro P. W., Jordan S., Corbett J. T., Schroeder J. L. Determination of total phthalate in urine by gas chromatography. Anal Chem. 1984 Feb;56(2):247–250. doi: 10.1021/ac00266a029. [DOI] [PubMed] [Google Scholar]
  3. Albro P. W., Thomas R. O. Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases. Biochim Biophys Acta. 1973 Jun 21;306(3):380–390. doi: 10.1016/0005-2760(73)90176-8. [DOI] [PubMed] [Google Scholar]
  4. Albro P. W., Thomas R., Fishbein L. Metabolism of diethylhexyl phthalate by rats. Isolation and characterization of the urinary metabolites. J Chromatogr. 1973 Feb 28;76(2):321–330. doi: 10.1016/s0021-9673(01)96915-8. [DOI] [PubMed] [Google Scholar]
  5. Brock J. W., Burse V. W., Ashley D. L., Najam A. R., Green V. E., Korver M. P., Powell M. K., Hodge C. C., Needham L. L. An improved analysis for chlorinated pesticides and polychlorinated biphenyls (PCBs) in human and bovine sera using solid-phase extraction. J Anal Toxicol. 1996 Nov-Dec;20(7):528–536. doi: 10.1093/jat/20.7.528. [DOI] [PubMed] [Google Scholar]
  6. Ching N. P., Jham G. N., Subbarayan C., Grossi C., Hicks R., Nealon T. F., Jr Gas chromatographic quantitation of two plasticizers contaminating intravenous fluids stored in plastic containers. J Chromatogr. 1981 Sep 11;225(1):196–201. doi: 10.1016/s0378-4347(00)80260-1. [DOI] [PubMed] [Google Scholar]
  7. David R. M., Moore M. R., Cifone M. A., Finney D. C., Guest D. Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di(2-ethylhexyl)phthalate and the effects of recovery. Toxicol Sci. 1999 Aug;50(2):195–205. doi: 10.1093/toxsci/50.2.195. [DOI] [PubMed] [Google Scholar]
  8. Dirven H. A., van den Broek P. H., Arends A. M., Nordkamp H. H., de Lepper A. J., Henderson P. T., Jongeneelen F. J. Metabolites of the plasticizer di(2-ethylhexyl)phthalate in urine samples of workers in polyvinylchloride processing industries. Int Arch Occup Environ Health. 1993;64(8):549–554. doi: 10.1007/BF00517699. [DOI] [PubMed] [Google Scholar]
  9. Dirven H. A., van den Broek P. H., Jongeneelen F. J. Determination of four metabolites of the plasticizer di(2-ethylhexyl)phthalate in human urine samples. Int Arch Occup Environ Health. 1993;64(8):555–560. doi: 10.1007/BF00517700. [DOI] [PubMed] [Google Scholar]
  10. Doull J., Cattley R., Elcombe C., Lake B. G., Swenberg J., Wilkinson C., Williams G., van Gemert M. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Regul Toxicol Pharmacol. 1999 Jun;29(3):327–357. doi: 10.1006/rtph.1999.1296. [DOI] [PubMed] [Google Scholar]
  11. Elsisi A. E., Carter D. E., Sipes I. G. Dermal absorption of phthalate diesters in rats. Fundam Appl Toxicol. 1989 Jan;12(1):70–77. doi: 10.1016/0272-0590(89)90063-8. [DOI] [PubMed] [Google Scholar]
  12. Ema M., Amano H., Itami T., Kawasaki H. Teratogenic evaluation of di-n-butyl phthalate in rats. Toxicol Lett. 1993 Aug;69(2):197–203. doi: 10.1016/0378-4274(93)90104-6. [DOI] [PubMed] [Google Scholar]
  13. Ema M., Harazono A., Miyawaki E., Ogawa Y. Developmental toxicity of mono-n-benzyl phthalate, one of the major metabolites of the plasticizer n-butyl benzyl phthalate, in rats. Toxicol Lett. 1996 Jul;86(1):19–25. doi: 10.1016/0378-4274(96)03665-x. [DOI] [PubMed] [Google Scholar]
  14. Ema M., Itami T., Kawasaki H. Teratogenic phase specificity of butyl benzyl phthalate in rats. Toxicology. 1993 Mar 30;79(1):11–19. doi: 10.1016/0300-483x(93)90202-4. [DOI] [PubMed] [Google Scholar]
  15. Foster P. M., Cook M. W., Thomas L. V., Walters D. G., Gangolli S. D. Differences in urinary metabolic profile from di-n-butyl phthalate-treated rats and hamsters. A possible explanation for species differences in susceptibility to testicular atrophy. Drug Metab Dispos. 1983 Jan-Feb;11(1):59–61. [PubMed] [Google Scholar]
  16. Foster P. M., Thomas L. V., Cook M. W., Gangolli S. D. Study of the testicular effects and changes in zinc excretion produced by some n-alkyl phthalates in the rat. Toxicol Appl Pharmacol. 1980 Jul;54(3):392–398. doi: 10.1016/0041-008x(80)90165-9. [DOI] [PubMed] [Google Scholar]
  17. Gray T. J., Beamand J. A. Effect of some phthalate esters and other testicular toxins on primary cultures of testicular cells. Food Chem Toxicol. 1984 Feb;22(2):123–131. doi: 10.1016/0278-6915(84)90092-9. [DOI] [PubMed] [Google Scholar]
  18. Gustafsson J. E., Uzqueda H. R. The influence of citrate and phosphate on the Mancini single radial immunodiffusion technique and suggested improvements for the determination of urinary albumin. Clin Chim Acta. 1978 Dec 15;90(3):249–257. doi: 10.1016/0009-8981(78)90264-4. [DOI] [PubMed] [Google Scholar]
  19. Harvan D. J., Hass J. R., Albro P. W., Friesen M. D. Mass spectrometry of di-(2-ethylhexyl)phthalate metabolites. Biomed Mass Spectrom. 1980 Jun;7(6):242–246. doi: 10.1002/bms.1200070604. [DOI] [PubMed] [Google Scholar]
  20. Heindel J. J., Powell C. J. Phthalate ester effects on rat Sertoli cell function in vitro: effects of phthalate side chain and age of animal. Toxicol Appl Pharmacol. 1992 Jul;115(1):116–123. doi: 10.1016/0041-008x(92)90374-2. [DOI] [PubMed] [Google Scholar]
  21. Luster M. I., Albro P. W., Chae K., Clark G., McKinney J. D. Radioimmunoassay for mono-(2-ethylhexyl) phthalate in unextracted plasma. Clin Chem. 1978 Mar;24(3):429–432. [PubMed] [Google Scholar]
  22. Pirkle J. L., Sampson E. J., Needham L. L., Patterson D. G., Ashley D. L. Using biological monitoring to assess human exposure to priority toxicants. Environ Health Perspect. 1995 Apr;103 (Suppl 3):45–48. doi: 10.1289/ehp.95103s345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Plonait S. L., Nau H., Maier R. F., Wittfoht W., Obladen M. Exposure of newborn infants to di-(2-ethylhexyl)-phthalate and 2-ethylhexanoic acid following exchange transfusion with polyvinylchloride catheters. Transfusion. 1993 Jul;33(7):598–605. doi: 10.1046/j.1537-2995.1993.33793325058.x. [DOI] [PubMed] [Google Scholar]
  24. Schmid P., Schlatter C. Excretion and metabolism of di(2-ethylhexyl)phthalate in man. Xenobiotica. 1985 Mar;15(3):251–256. doi: 10.3109/00498258509045356. [DOI] [PubMed] [Google Scholar]
  25. Shiota K., Chou M. J., Nishimura H. Embryotoxic effects of di-2-ethylhexyl phthalate (DEHP) and di-n-buty phthalate (DBP) in mice. Environ Res. 1980 Jun;22(1):245–253. doi: 10.1016/0013-9351(80)90136-x. [DOI] [PubMed] [Google Scholar]
  26. Ward J. M., Diwan B. A., Ohshima M., Hu H., Schuller H. M., Rice J. M. Tumor-initiating and promoting activities of di(2-ethylhexyl) phthalate in vivo and in vitro. Environ Health Perspect. 1986 Mar;65:279–291. doi: 10.1289/ehp.8665279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES