Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Nov;108(11):1015–1018. doi: 10.1289/ehp.001081015

Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine.

X C Le 1, M Ma 1, W R Cullen 1, H V Aposhian 1, X Lu 1, B Zheng 1
PMCID: PMC1240155  PMID: 11102289

Abstract

In this study we report on the finding of monomethylarsonous acid [MMA(III)] in human urine. This newly identified arsenic species is a key intermediate in the metabolic pathway of arsenic biomethylation, which involves stepwise reduction of pentavalent to trivalent arsenic species followed by oxidative addition of a methyl group. Arsenic speciation was carried out using ion-pair chromatographic separation of arsenic compounds with hydride generation atomic fluorescence spectrometry detection. Speciation of the inorganic arsenite [As(III)], inorganic arsenate [As(V)], monomethylarsonic acid [MMA(V)], dimethylarsinic acid [DMA(V)], and MMA(III) in a urine sample was complete in 5 min. Urine samples collected from humans before and after a single oral administration of 300 mg sodium 2,3-dimercapto-1-propane sulfonate (DMPS) were analyzed for arsenic species. MMA(III) was found in 51 out of 123 urine samples collected from 41 people in inner Mongolia 0-6 hr after the administration of DMPS. MMA(III )in urine samples did not arise from the reduction of MMA(V) by DMPS. DMPS probably assisted the release of MMA(III) that was formed in the body. Along with the presence of MMA(III), there was an increase in the relative concentration of MMA(V) and a decrease in DMA(V) in the urine samples collected after the DMPS ingestion.

Full Text

The Full Text of this article is available as a PDF (147.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aposhian H. V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol. 1997;37:397–419. doi: 10.1146/annurev.pharmtox.37.1.397. [DOI] [PubMed] [Google Scholar]
  2. Aposhian H. V., Gurzau E. S., Le X. C., Gurzau A., Healy S. M., Lu X., Ma M., Yip L., Zakharyan R. A., Maiorino R. M. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol. 2000 Aug;13(8):693–697. doi: 10.1021/tx000114o. [DOI] [PubMed] [Google Scholar]
  3. Aposhian H. V., Zheng B., Aposhian M. M., Le X. C., Cebrian M. E., Cullen W., Zakharyan R. A., Ma M., Dart R. C., Cheng Z. DMPS-arsenic challenge test. II. Modulation of arsenic species, including monomethylarsonous acid (MMA(III)), excreted in human urine. Toxicol Appl Pharmacol. 2000 May 15;165(1):74–83. doi: 10.1006/taap.2000.8922. [DOI] [PubMed] [Google Scholar]
  4. Brown J. L., Kitchin K. T., George M. Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratog Carcinog Mutagen. 1997;17(2):71–84. [PubMed] [Google Scholar]
  5. Buchet J. P., Lauwerys R., Roels H. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health. 1981;48(1):71–79. doi: 10.1007/BF00405933. [DOI] [PubMed] [Google Scholar]
  6. Buchet J. P., Lauwerys R., Roels H. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int Arch Occup Environ Health. 1981;48(2):111–118. doi: 10.1007/BF00378431. [DOI] [PubMed] [Google Scholar]
  7. Crecelius E., Yager J. Intercomparison of analytical methods for arsenic speciation in human urine. Environ Health Perspect. 1997 Jun;105(6):650–653. doi: 10.1289/ehp.97105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Del Razo L. M., García-Vargas G. G., Vargas H., Albores A., Gonsebatt M. E., Montero R., Ostrosky-Wegman P., Kelsh M., Cebrián M. E. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol. 1997;71(4):211–217. doi: 10.1007/s002040050378. [DOI] [PubMed] [Google Scholar]
  9. Delnomdedieu M., Basti M. M., Styblo M., Otvos J. D., Thomas D. J. Complexation of arsenic species in rabbit erythrocytes. Chem Res Toxicol. 1994 Sep-Oct;7(5):621–627. doi: 10.1021/tx00041a006. [DOI] [PubMed] [Google Scholar]
  10. Feldmann J., Lai V. W., Cullen W. R., Ma M., Lu X., Le X. C. Sample preparation and storage can change arsenic speciation in human urine. Clin Chem. 1999 Nov;45(11):1988–1997. [PubMed] [Google Scholar]
  11. Foà V., Colombi A., Maroni M., Buratti M., Calzaferri G. The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci Total Environ. 1984 Mar 15;34(3):241–259. doi: 10.1016/0048-9697(84)90066-4. [DOI] [PubMed] [Google Scholar]
  12. Hopenhayn-Rich C., Biggs M. L., Smith A. H., Kalman D. A., Moore L. E. Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect. 1996 Jun;104(6):620–628. doi: 10.1289/ehp.96104620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kalman D. A., Hughes J., van Belle G., Burbacher T., Bolgiano D., Coble K., Mottet N. K., Polissar L. The effect of variable environmental arsenic contamination on urinary concentrations of arsenic species. Environ Health Perspect. 1990 Nov;89:145–151. doi: 10.1289/ehp.9089145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kavanagh P., Farago M. E., Thornton I., Goessler W., Kuehnelt D., Schlagenhaufen C., Irgolic K. J. Urinary arsenic species in Devon and Cornwall residents, UK. A pilot study. Analyst. 1998 Jan;123(1):27–29. doi: 10.1039/a704893i. [DOI] [PubMed] [Google Scholar]
  15. Le X. C., Cullen W. R., Reimer K. J. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem. 1994 Apr;40(4):617–624. [PubMed] [Google Scholar]
  16. Le X. C., Ma M. Short-column liquid chromatography with hydride generation atomic fluorescence detection for the speciation of arsenic. Anal Chem. 1998 May 1;70(9):1926–1933. doi: 10.1021/ac971247q. [DOI] [PubMed] [Google Scholar]
  17. Lin S., Cullen W. R., Thomas D. J. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol. 1999 Oct;12(10):924–930. doi: 10.1021/tx9900775. [DOI] [PubMed] [Google Scholar]
  18. Lin T. H., Huang Y. L. Chemical speciation of arsenic in urine of patients with blackfoot disease. Biol Trace Elem Res. 1995 Jun;48(3):251–261. doi: 10.1007/BF02789407. [DOI] [PubMed] [Google Scholar]
  19. Ma M., Le X. C. Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem. 1998 Mar;44(3):539–550. [PubMed] [Google Scholar]
  20. Maiorino R. M., Dart R. C., Carter D. E., Aposhian H. V. Determination and metabolism of dithiol chelating agents. XII. Metabolism and pharmacokinetics of sodium 2,3-dimercaptopropane-1-sulfonate in humans. J Pharmacol Exp Ther. 1991 Nov;259(2):808–814. [PubMed] [Google Scholar]
  21. Mass M. J., Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997 Jun;386(3):263–277. doi: 10.1016/s1383-5742(97)00008-2. [DOI] [PubMed] [Google Scholar]
  22. Ng J. C., Johnson D., Imray P., Chiswell B., Moore M. R. Speciation of arsenic metabolites in the urine of occupational workers and experimental rats using an optimised hydride cold-trapping method. Analyst. 1998 May;123(5):929–933. doi: 10.1039/a707726b. [DOI] [PubMed] [Google Scholar]
  23. Ochi T., Nakajima F., Sakurai T., Kaise T., Oya-Ohta Y. Dimethylarsinic acid causes apoptosis in HL-60 cells via interaction with glutathione. Arch Toxicol. 1996;70(12):815–821. doi: 10.1007/s002040050344. [DOI] [PubMed] [Google Scholar]
  24. Petrick J. S., Ayala-Fierro F., Cullen W. R., Carter D. E., Vasken Aposhian H. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol. 2000 Mar 1;163(2):203–207. doi: 10.1006/taap.1999.8872. [DOI] [PubMed] [Google Scholar]
  25. Styblo M., Del Razo L. M., LeCluyse E. L., Hamilton G. A., Wang C., Cullen W. R., Thomas D. J. Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol. 1999 Jul;12(7):560–565. doi: 10.1021/tx990050l. [DOI] [PubMed] [Google Scholar]
  26. Styblo M., Hughes M. F., Thomas D. J. Liberation and analysis of protein-bound arsenicals. J Chromatogr B Biomed Appl. 1996 Feb 23;677(1):161–166. doi: 10.1016/0378-4347(95)00490-4. [DOI] [PubMed] [Google Scholar]
  27. Styblo M., Serves S. V., Cullen W. R., Thomas D. J. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol. 1997 Jan;10(1):27–33. doi: 10.1021/tx960139g. [DOI] [PubMed] [Google Scholar]
  28. Styblo M., Yamauchi H., Thomas D. J. Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol Appl Pharmacol. 1995 Dec;135(2):172–178. doi: 10.1006/taap.1995.1220. [DOI] [PubMed] [Google Scholar]
  29. Stýblo M., Thomas D. J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochem Pharmacol. 1995 Mar 30;49(7):971–977. doi: 10.1016/0006-2952(95)00008-n. [DOI] [PubMed] [Google Scholar]
  30. Tezuka M., Hanioka K., Yamanaka K., Okada S. Gene damage induced in human alveolar type II (L-132) cells by exposure to dimethylarsinic acid. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1178–1183. doi: 10.1006/bbrc.1993.1341. [DOI] [PubMed] [Google Scholar]
  31. Thompson D. J. A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact. 1993 Sep;88(2-3):89–14. doi: 10.1016/0009-2797(93)90086-e. [DOI] [PubMed] [Google Scholar]
  32. Vahter M. Environmental and occupational exposure to inorganic arsenic. Acta Pharmacol Toxicol (Copenh) 1986;59 (Suppl 7):31–34. doi: 10.1111/j.1600-0773.1986.tb02701.x. [DOI] [PubMed] [Google Scholar]
  33. Vahter M. What are the chemical forms of arsenic in urine, and what can they tell us about exposure? Clin Chem. 1994 May;40(5):679–680. [PubMed] [Google Scholar]
  34. Wanibuchi H., Yamamoto S., Chen H., Yoshida K., Endo G., Hori T., Fukushima S. Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis. 1996 Nov;17(11):2435–2439. doi: 10.1093/carcin/17.11.2435. [DOI] [PubMed] [Google Scholar]
  35. Yager J. W., Hicks J. B., Fabianova E. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant. Environ Health Perspect. 1997 Aug;105(8):836–842. doi: 10.1289/ehp.97105836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamanaka K., Okada S. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ Health Perspect. 1994 Sep;102 (Suppl 3):37–40. doi: 10.1289/ehp.94102s337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zakharyan R. A., Aposhian H. V. Enzymatic reduction of arsenic compounds in mammalian systems: the rate-limiting enzyme of rabbit liver arsenic biotransformation is MMA(V) reductase. Chem Res Toxicol. 1999 Dec;12(12):1278–1283. doi: 10.1021/tx9901231. [DOI] [PubMed] [Google Scholar]
  38. Zakharyan R. A., Ayala-Fierro F., Cullen W. R., Carter D. M., Aposhian H. V. Enzymatic methylation of arsenic compounds. VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes. Toxicol Appl Pharmacol. 1999 Jul 1;158(1):9–15. doi: 10.1006/taap.1999.8687. [DOI] [PubMed] [Google Scholar]
  39. Zhao C. Q., Young M. R., Diwan B. A., Coogan T. P., Waalkes M. P. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10907–10912. doi: 10.1073/pnas.94.20.10907. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES