Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Nov;108(11):1091–1097. doi: 10.1289/ehp.001081091

Lead isotopes as a supplementary tool in the routine evaluation of household lead hazards.

R H Gwiazda 1, D R Smith 1
PMCID: PMC1240168  PMID: 11102302

Abstract

The advent of magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS) allows rapid, accurate, and precise measurement of lead isotopes in environmental and biological samples at a lower cost than traditional methods. This may increase the feasibility of including lead isotope measurements as a routine tool to identify household sources of lead exposure to children. Here, we present three household case studies to illustrate how lead hazard evaluations by an environmental specialist could be supplemented with routine lead isotope analyses of potential lead sources and blood. Sampling for lead isotopes was undertaken following the U.S. Department of Housing and Urban Development regulatory guidelines for the evaluation of lead hazards in housing, and with the consideration of minimizing the additional costs associated with lead isotope measurements. The range of isotopic ratios within a single residence was large enough to allow the characterization of different lead sources, particularly when both major (e.g., (207)Pb/(206)Pb) and minor (e.g., (206)Pb/(204)Pb) isotope ratios were considered. These cases illustrate the utility of the lead isotope method to identify main source(s) of lead exposure to the child; discard unlikely sources of exposure to the child; point to sources of lead to dust; and substantiate or refine the environmental assessment based exclusively on lead concentrations and loadings. Thus, a more effective evaluation of household lead hazards would likely benefit from considering a) lead concentrations and loadings in and around the household environment; b) all isotopic ratios of potential lead sources within that environment; and c) information about behavioral habits, as well as an evaluation of viable pathways of exposure to the child.

Full Text

The Full Text of this article is available as a PDF (165.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angle C. R., Manton W. I., Stanek K. L. Stable isotope identification of lead sources in preschool children--the Omaha Study. J Toxicol Clin Toxicol. 1995;33(6):657–662. doi: 10.3109/15563659509010624. [DOI] [PubMed] [Google Scholar]
  2. Aschengrau A., Hardy S., Mackey P., Pultinas D. The impact of low technology lead hazard reduction activities among children with mildly elevated blood lead levels. Environ Res. 1998 Oct;79(1):41–50. doi: 10.1006/enrs.1998.3858. [DOI] [PubMed] [Google Scholar]
  3. Barry P. S. Concentrations of lead in the tissues of children. Br J Ind Med. 1981 Feb;38(1):61–71. doi: 10.1136/oem.38.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bellinger D., Sloman J., Leviton A., Rabinowitz M., Needleman H. L., Waternaux C. Low-level lead exposure and children's cognitive function in the preschool years. Pediatrics. 1991 Feb;87(2):219–227. [PubMed] [Google Scholar]
  5. Bornschein R. L., Succop P., Dietrich K. N., Clark C. S., Que Hee S., Hammond P. B. The influence of social and environmental factors on dust lead, hand lead, and blood lead levels in young children. Environ Res. 1985 Oct;38(1):108–118. doi: 10.1016/0013-9351(85)90076-3. [DOI] [PubMed] [Google Scholar]
  6. Charney E., Kessler B., Farfel M., Jackson D. Childhood lead poisoning. A controlled trial of the effect of dust-control measures on blood lead levels. N Engl J Med. 1983 Nov 3;309(18):1089–1093. doi: 10.1056/NEJM198311033091804. [DOI] [PubMed] [Google Scholar]
  7. Davies D. J., Thornton I., Watt J. M., Culbard E. B., Harvey P. G., Delves H. T., Sherlock J. C., Smart G. A., Thomas J. F., Quinn M. J. Lead intake and blood lead in two-year-old U.K. urban children. Sci Total Environ. 1990 Jan;90:13–29. doi: 10.1016/0048-9697(90)90182-t. [DOI] [PubMed] [Google Scholar]
  8. Flegal A. R., Smith D. R. Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ Res. 1992 Aug;58(2):125–133. doi: 10.1016/s0013-9351(05)80209-9. [DOI] [PubMed] [Google Scholar]
  9. Gulson B. L., Davis J. J., Bawden-Smith J. Paint as a source of recontamination of houses in urban environments and its role in maintaining elevated blood leads in children. Sci Total Environ. 1995 Mar 30;164(3):221–235. doi: 10.1016/0048-9697(95)04512-y. [DOI] [PubMed] [Google Scholar]
  10. Gulson B. L., Gillings B. R. Lead exchange in teeth and bone--a pilot study using stable lead isotopes. Environ Health Perspect. 1997 Aug;105(8):820–824. doi: 10.1289/ehp.97105820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  12. Gulson B. L., Mahaffey K. R., Mizon K. J., Korsch M. J., Cameron M. A., Vimpani G. Contribution of tissue lead to blood lead in adult female subjects based on stable lead isotope methods. J Lab Clin Med. 1995 Jun;125(6):703–712. [PubMed] [Google Scholar]
  13. Gulson B. L., Mahaffey K. R., Vidal M., Jameson C. W., Law A. J., Mizon K. J., Smith A. J., Korsch M. J. Dietary lead intakes for mother/child pairs and relevance to pharmacokinetic models. Environ Health Perspect. 1997 Dec;105(12):1334–1342. doi: 10.1289/ehp.971051334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gulson B. L., Mizon K. J., Korsch M. J., Howarth D. Non-orebody sources are significant contributors to blood lead of some children with low to moderate lead exposure in a major lead mining community. Sci Total Environ. 1996 Mar 29;181(3):223–230. doi: 10.1016/0048-9697(95)05015-9. [DOI] [PubMed] [Google Scholar]
  15. Gulson B. L., Mizon K. J., Korsch M. J., Howarth D., Phillips A., Hall J. Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. Bull Environ Contam Toxicol. 1996 Apr;56(4):543–550. doi: 10.1007/s001289900078. [DOI] [PubMed] [Google Scholar]
  16. Hilts S. R., Hertzman C., Marion S. A. A controlled trial of the effect of HEPA vacuuming on childhood lead exposure. Can J Public Health. 1995 Sep-Oct;86(5):345–350. [PubMed] [Google Scholar]
  17. Inskip M. J., Franklin C. A., Baccanale C. L., Manton W. I., O'Flaherty E. J., Edwards C. M., Blenkinsop J. B., Edwards E. B. Measurement of the flux of lead from bone to blood in a nonhuman primate (Macaca fascicularis) by sequential administration of stable lead isotopes. Fundam Appl Toxicol. 1996 Oct;33(2):235–245. doi: 10.1006/faat.1996.0161. [DOI] [PubMed] [Google Scholar]
  18. Lanphear B. P., Emond M., Jacobs D. E., Weitzman M., Tanner M., Winter N. L., Yakir B., Eberly S. A side-by-side comparison of dust collection methods for sampling lead-contaminated house dust. Environ Res. 1995 Feb;68(2):114–123. doi: 10.1006/enrs.1995.1015. [DOI] [PubMed] [Google Scholar]
  19. Lanphear B. P., Howard C., Eberly S., Auinger P., Kolassa J., Weitzman M., Schaffer S. J., Alexander K. Primary prevention of childhood lead exposure: A randomized trial of dust control. Pediatrics. 1999 Apr;103(4 Pt 1):772–777. doi: 10.1542/peds.103.4.772. [DOI] [PubMed] [Google Scholar]
  20. Lanphear B. P., Matte T. D., Rogers J., Clickner R. P., Dietz B., Bornschein R. L., Succop P., Mahaffey K. R., Dixon S., Galke W. The contribution of lead-contaminated house dust and residential soil to children's blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res. 1998 Oct;79(1):51–68. doi: 10.1006/enrs.1998.3859. [DOI] [PubMed] [Google Scholar]
  21. Lanphear B. P. The paradox of lead poisoning prevention. Science. 1998 Sep 11;281(5383):1617–1618. doi: 10.1126/science.281.5383.1617. [DOI] [PubMed] [Google Scholar]
  22. Lanphear B. P., Winter N. L., Apetz L., Eberly S., Weitzman M. A randomized trial of the effect of dust control on children's blood lead levels. Pediatrics. 1996 Jul;98(1):35–40. [PubMed] [Google Scholar]
  23. Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Manton W. I. Sources of lead in blood. Identification by stable isotopes. Arch Environ Health. 1977 Jul-Aug;32(4):149–159. doi: 10.1080/00039896.1977.10667273. [DOI] [PubMed] [Google Scholar]
  25. Manton W. I. Total contribution of airborne lead to blood lead. Br J Ind Med. 1985 Mar;42(3):168–172. doi: 10.1136/oem.42.3.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mendelsohn A. L., Dreyer B. P., Fierman A. H., Rosen C. M., Legano L. A., Kruger H. A., Lim S. W., Barasch S., Au L., Courtlandt C. D. Low-level lead exposure and cognitive development in early childhood. J Dev Behav Pediatr. 1999 Dec;20(6):425–431. doi: 10.1097/00004703-199912000-00004. [DOI] [PubMed] [Google Scholar]
  27. NICHOLS R. L., McCO MB D. E., HADDAD N., MURRAY E. S. Studies on trachoma. II. Comparison of fluorescent antibody, giemsa, and egg isolation methods for detection of trachoma virus in human conjunctival scrapings. Am J Trop Med Hyg. 1963 Mar;12:223–229. [PubMed] [Google Scholar]
  28. O'Flaherty E. J., Inskip M. J., Franklin C. A., Durbin P. W., Manton W. I., Baccanale C. L. Evaluation and modification of a physiologically based model of lead kinetics using data from a sequential isotope study in cynomolgus monkeys. Toxicol Appl Pharmacol. 1998 Mar;149(1):1–16. doi: 10.1006/taap.1997.8328. [DOI] [PubMed] [Google Scholar]
  29. O'Flaherty E. J. Modeling bone mineral metabolism, with special reference to calcium and lead. Neurotoxicology. 1992 Winter;13(4):789–797. [PubMed] [Google Scholar]
  30. Pirkle J. L., Kaufmann R. B., Brody D. J., Hickman T., Gunter E. W., Paschal D. C. Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect. 1998 Nov;106(11):745–750. doi: 10.1289/ehp.98106745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rabinowitz M., Leviton A., Needleman H., Bellinger D., Waternaux C. Environmental correlates of infant blood lead levels in Boston. Environ Res. 1985 Oct;38(1):96–107. doi: 10.1016/0013-9351(85)90075-1. [DOI] [PubMed] [Google Scholar]
  32. Rust S. W., Kumar P., Burgoon D. A., Niemuth N. A., Schultz B. D. Influence of bone-lead stores on the observed effectiveness of lead hazard intervention. Environ Res. 1999 Oct;81(3):175–184. doi: 10.1006/enrs.1999.3972. [DOI] [PubMed] [Google Scholar]
  33. Smith D. R., Osterloh J. D., Flegal A. R. Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environ Health Perspect. 1996 Jan;104(1):60–66. doi: 10.1289/ehp.9610460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith D. R., Osterloh J. D., Niemeyer S., Flegal A. R. Stable isotope labeling of lead compartments in rats with ultralow lead concentrations. Environ Res. 1992 Apr;57(2):190–207. doi: 10.1016/s0013-9351(05)80079-9. [DOI] [PubMed] [Google Scholar]
  35. Tera O., Schwartzman D. W., Watkins T. R. Identification of gasoline lead in children's blood using isotopic analysis. Arch Environ Health. 1985 Mar-Apr;40(2):120–123. doi: 10.1080/00039896.1985.10545901. [DOI] [PubMed] [Google Scholar]
  36. Yaffe Y., Flessel C. P., Wesolowski J. J., del Rosario A., Guirguis G. N., Matias V., Gramlich J. W., Kelly W. R., Degarmo T. E., Coleman G. C. Identification of lead sources in California children using the stable isotope ratio technique. Arch Environ Health. 1983 Jul-Aug;38(4):237–245. doi: 10.1080/00039896.1983.10545809. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES