Abstract
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively) and DEA (0.041 nmol/min/mg and 0.040 nmol/min/mg, respectively). We have also shown that the cytochrome P450 isoforms responsible for human metabolism of acetochlor, butachlor, and metolachlor are CYP3A4 and CYP2B6.
Full Text
The Full Text of this article is available as a PDF (120.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonfanti M., Taverna P., Chiappetta L., Villa P., D'Incalci M., Bagnati R., Fanelli R. DNA damage induced by alachlor after in vitro activation by rat hepatocytes. Toxicology. 1992;72(2):207–219. doi: 10.1016/0300-483x(92)90113-s. [DOI] [PubMed] [Google Scholar]
- Coleman S., Liu S., Linderman R., Hodgson E., Rose R. L. In vitro metabolism of alachlor by human liver microsomes and human cytochrome P450 isoforms. Chem Biol Interact. 1999 Aug 30;122(1):27–39. doi: 10.1016/s0009-2797(99)00107-6. [DOI] [PubMed] [Google Scholar]
- Dearfield K. L., McCarroll N. E., Protzel A., Stack H. F., Jackson M. A., Waters M. D. A survey of EPA/OPP and open literature on selected pesticide chemicals. II. Mutagenicity and carcinogenicity of selected chloroacetanilides and related compounds. Mutat Res. 1999 Jul 15;443(1-2):183–221. doi: 10.1016/s1383-5742(99)00019-8. [DOI] [PubMed] [Google Scholar]
- Feng P. C., Wilson A. G., McClanahan R. H., Patanella J. E., Wratten S. J. Metabolism of alachlor by rat and mouse liver and nasal turbinate tissues. Drug Metab Dispos. 1990 May-Jun;18(3):373–377. [PubMed] [Google Scholar]
- Heydens W. F., Wilson A. G., Kier L. D., Lau H., Thake D. C., Martens M. A. An evaluation of the carcinogenic potential of the herbicide alachlor to man. Hum Exp Toxicol. 1999 Jun;18(6):363–391. doi: 10.1191/096032799678840219. [DOI] [PubMed] [Google Scholar]
- Hill A. B., Jefferies P. R., Quistad G. B., Casida J. E. Dialkylquinoneimine metabolites of chloroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes. Mutat Res. 1997 Dec 12;395(2-3):159–171. doi: 10.1016/s1383-5718(97)00163-0. [DOI] [PubMed] [Google Scholar]
- Jefferies P. R., Quistad G. B., Casida J. E. Dialkylquinonimines validated as in vivo metabolites of alachlor, acetochlor, and metolachlor herbicides in rats. Chem Res Toxicol. 1998 Apr;11(4):353–359. doi: 10.1021/tx970209z. [DOI] [PubMed] [Google Scholar]
- Li A. A., Asbury K. J., Hopkins W. E., Feng P. C., Wilson A. G. Metabolism of alachlor by rat and monkey liver and nasal turbinate tissue. Drug Metab Dispos. 1992 Jul-Aug;20(4):616–618. [PubMed] [Google Scholar]
- Mentlein R., Ronai A., Robbi M., Heymann E., von Deimling O. Genetic identification of rat liver carboxylesterases isolated in different laboratories. Biochim Biophys Acta. 1987 May 27;913(1):27–38. doi: 10.1016/0167-4838(87)90228-7. [DOI] [PubMed] [Google Scholar]
- Nesnow S., Agarwal S. C., Padgett W. T., Lambert G. R., Boone P., Richard A. M. Synthesis and characterization of adducts of alachlor and 2-chloro-N-(2,6-diethylphenyl)acetamide with 2'-deoxyguanosine, thymidine, and their 3'-monophosphates. Chem Res Toxicol. 1995 Mar;8(2):209–217. doi: 10.1021/tx00044a005. [DOI] [PubMed] [Google Scholar]
- Szklarz G. D., Halpert J. R. Molecular modeling of cytochrome P450 3A4. J Comput Aided Mol Des. 1997 May;11(3):265–272. doi: 10.1023/a:1007956612081. [DOI] [PubMed] [Google Scholar]
- Wang T. C., Lee T. C., Lin M. F., Lin S. Y. Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells. Mutat Res. 1987 Aug;188(4):311–321. doi: 10.1016/0165-1218(87)90008-5. [DOI] [PubMed] [Google Scholar]
- Wetmore B. A., Mitchell A. D., Meyer S. A., Genter M. B. Evidence for site-specific bioactivation of alachlor in the olfactory mucosa of the Long-Evans rat. Toxicol Sci. 1999 Jun;49(2):202–212. doi: 10.1093/toxsci/49.2.202. [DOI] [PubMed] [Google Scholar]
