Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Dec;108(12):1189–1193. doi: 10.1289/ehp.001081189

Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa.

H Ohtani 1, I Miura 1, Y Ichikawa 1
PMCID: PMC1240201  PMID: 11133400

Abstract

To examine the effects of dibutyl phthalate (DBP) on gonadal sex differentiation, genetically male tadpoles of Rana rugosa were exposed to dilute solutions of DBP at concentrations of 0.1, 1, or 10 microM during days 19-23 after fertilization, which is the critical period of gonadal sex differentiation in R. rugosa. Tadpoles were necropsied on day 40. The genetically male tadpoles were produced from crossings between males (ZZ) of one local population, in which females are the heterogametic sex, and females (XX) of another local population, in which males are the heterogametic sex. As positive control groups, tadpoles were exposed to dilute solutions of 17beta-estradiol (E(2)) at concentrations of 0. 01, 0.1, or 1 microM during the same period. The internal structure of the gonads was histologically examined in a total of 30 control tadpoles, 86 E(2)-treated tadpoles, and 90 DBP-treated tadpoles. The gonads of the control tadpoles all showed the typical structure of testes. In contrast, 0.01, 0.1, and 1 microM E(2) treatments caused the undifferentiated gonads of 18, 63, and 100% of the tadpoles, respectively, to develop into gonads of complete or partial ovarian structure. After 0.1, 1, and 10 microM DBP treatment, 0, 7, and 17% of tadpoles, respectively, were similarly affected. These findings suggest that DBP was about 1,000-fold less potent than E(2). Nevertheless, DBP is an environmentally dangerous hormone that disrupts the pathways of testicular differentiation in genetically male animals.

Full Text

The Full Text of this article is available as a PDF (166.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crews D., Bergeron J. M. Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination. J Endocrinol. 1994 Nov;143(2):279–289. doi: 10.1677/joe.0.1430279. [DOI] [PubMed] [Google Scholar]
  2. De Guise S., Martineau D., Béland P., Fournier M. Possible mechanisms of action of environmental contaminants on St. Lawrence beluga whales (Delphinapterus leucas). Environ Health Perspect. 1995 May;103 (Suppl 4):73–77. doi: 10.1289/ehp.95103s473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ema M., Miyawaki E., Kawashima K. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late pregnancy in rats. Toxicol Lett. 1998 Sep 1;98(1-2):87–93. doi: 10.1016/s0378-4274(98)00107-6. [DOI] [PubMed] [Google Scholar]
  4. Guillette L. J., Jr, Gross T. S., Masson G. R., Matter J. M., Percival H. F., Woodward A. R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect. 1994 Aug;102(8):680–688. doi: 10.1289/ehp.94102680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harris C. A., Henttu P., Parker M. G., Sumpter J. P. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect. 1997 Aug;105(8):802–811. doi: 10.1289/ehp.97105802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jobling S., Reynolds T., White R., Parker M. G., Sumpter J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect. 1995 Jun;103(6):582–587. doi: 10.1289/ehp.95103582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  8. Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
  9. Milligan S. R., Balasubramanian A. V., Kalita J. C. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect. 1998 Jan;106(1):23–26. doi: 10.1289/ehp.9810623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miura I., Ohtani H., Hanada H., Ichikawa Y., Kashiwagi A., Nakamura M. Evidence for two successive pericentric inversions in sex lampbrush chromosomes of Rana rugosa (Anura: Ranidae). Chromosoma. 1997 Aug;106(3):178–182. doi: 10.1007/s004120050237. [DOI] [PubMed] [Google Scholar]
  11. Miura I., Ohtani H., Kashiwagi A., Hanada H., Nakamura M. Structural differences between XX and ZW sex lampbrush chromosomes in Rana rugosa females (Anura: Ranidae). Chromosoma. 1996 Oct;105(4):237–241. doi: 10.1007/BF02528772. [DOI] [PubMed] [Google Scholar]
  12. Miura I., Ohtani H., Nakamura M., Ichikawa Y., Saitoh K. The origin and differentiation of the heteromorphic sex chromosomes Z, W, X, and Y in the frog Rana rugosa, inferred from the sequences of a sex-linked gene, ADP/ATP translocase. Mol Biol Evol. 1998 Dec;15(12):1612–1619. doi: 10.1093/oxfordjournals.molbev.a025889. [DOI] [PubMed] [Google Scholar]
  13. Mylchreest E., Cattley R. C., Foster P. M. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci. 1998 May;43(1):47–60. doi: 10.1006/toxs.1998.2436. [DOI] [PubMed] [Google Scholar]
  14. Mylchreest E., Sar M., Cattley R. C., Foster P. M. Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol. 1999 Apr 15;156(2):81–95. doi: 10.1006/taap.1999.8643. [DOI] [PubMed] [Google Scholar]
  15. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohtani H., Miura I., Hanada H., Ichikawa Y. Alteration of the sex determining system resulting from structural change of the sex chromosomes in the frog Rana rugosa. J Exp Zool. 2000 Feb 15;286(3):313–319. [PubMed] [Google Scholar]
  17. Routledge E. J., Parker J., Odum J., Ashby J., Sumpter J. P. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol Appl Pharmacol. 1998 Nov;153(1):12–19. doi: 10.1006/taap.1998.8544. [DOI] [PubMed] [Google Scholar]
  18. Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect. 1995 Dec;103(12):1136–1143. doi: 10.1289/ehp.951031136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
  21. Sumpter J. P., Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect. 1995 Oct;103 (Suppl 7):173–178. doi: 10.1289/ehp.95103s7173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takase M. Differences in genetic backgrounds affecting gonadal differentiation between two local populations of the Japanese wrinkled frog (Rana rugosa). Anat Embryol (Berl) 1998 Aug;198(2):141–148. doi: 10.1007/s004290050172. [DOI] [PubMed] [Google Scholar]
  23. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
  24. Zacharewski T. R., Meek M. D., Clemons J. H., Wu Z. F., Fielden M. R., Matthews J. B. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci. 1998 Dec;46(2):282–293. doi: 10.1006/toxs.1998.2505. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES