Abstract
Ultraviolet (UV) screens are increasingly used as a result of growing concern about UV radiation and skin cancer; they are also added to cosmetics and other products for light stability. Recent data on bioaccumulation in wildlife and humans point to a need for in-depth analyses of systemic toxicology, in particular with respect to reproduction and ontogeny. We examined six frequently used UVA and UVB screens for estrogenicity in vitro and in vivo. In MCF-7 breast cancer cells, five out of six chemicals, that is, benzophenone-3 (Bp-3), homosalate (HMS), 4-methyl-benzylidene camphor (4-MBC), octyl-methoxycinnamate (OMC), and octyl-dimethyl-PABA (OD-PABA), increased cell proliferation with median effective concentrations (EC(50)) values between 1.56 and 3.73 microM, whereas butyl-methoxydibenzoylmethane (B-MDM) was inactive. Further evidence for estrogenic activity was the induction of pS2 protein in MCF-7 cells and the blockade of the proliferative effect of 4-MBC by the estrogen antagonist ICI 182,780. In the uterotrophic assay using immature Long-Evans rats that received the chemicals for 4 days in powdered feed, uterine weight was dose-dependently increased by 4-MBC (ED(50 )309mg/kg/day), OMC (ED(50) 935 mg/kg/day), and weakly by Bp-3 (active at 1,525 mg/kg/day). Three compounds were inactive by the oral route in the doses tested. Dermal application of 4-MBC to immature hairless (hr/hr) rats also increased uterine weight at concentrations of 5 and 7.5% in olive oil. Our findings indicate that UV screens should be tested for endocrine activity, in view of possible long-term effects in humans and wildlife.
Full Text
The Full Text of this article is available as a PDF (86.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aghazarian V., Tchiakpe L., Reynier J. P., Gayte-Sorbier A. Release of benzimidazole and benzylidene camphor from topical sunscreen formulations. Drug Dev Ind Pharm. 1999 Dec;25(12):1277–1282. doi: 10.1081/ddc-100102299. [DOI] [PubMed] [Google Scholar]
- Ashby J., Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect. 1998 Nov;106(11):719–720. doi: 10.1289/ehp.98106719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Autier P., Doré J. F., Cattaruzza M. S., Renard F., Luther H., Gentiloni-Silverj F., Zantedeschi E., Mezzetti M., Monjaud I., Andry M. Sunscreen use, wearing clothes, and number of nevi in 6- to 7-year-old European children. European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Natl Cancer Inst. 1998 Dec 16;90(24):1873–1880. doi: 10.1093/jnci/90.24.1873. [DOI] [PubMed] [Google Scholar]
- Bigby M. The sunscreen and melanoma controversy. Arch Dermatol. 1999 Dec;135(12):1526–1527. doi: 10.1001/archderm.135.12.1526. [DOI] [PubMed] [Google Scholar]
- Blair R. M., Fang H., Branham W. S., Hass B. S., Dial S. L., Moland C. L., Tong W., Shi L., Perkins R., Sheehan D. M. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000 Mar;54(1):138–153. doi: 10.1093/toxsci/54.1.138. [DOI] [PubMed] [Google Scholar]
- Christou M., Savas U., Spink D. C., Gierthy J. F., Jefcoate C. R. Co-expression of human CYP1A1 and a human analog of cytochrome P450-EF in response to 2,3,7,8-tetrachloro-dibenzo-p-dioxin in the human mammary carcinoma-derived MCF-7 cells. Carcinogenesis. 1994 Apr;15(4):725–732. doi: 10.1093/carcin/15.4.725. [DOI] [PubMed] [Google Scholar]
- Gould J. C., Leonard L. S., Maness S. C., Wagner B. L., Conner K., Zacharewski T., Safe S., McDonnell D. P., Gaido K. W. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998 Jul 25;142(1-2):203–214. doi: 10.1016/s0303-7207(98)00084-7. [DOI] [PubMed] [Google Scholar]
- Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000 Jun;224(2):61–68. doi: 10.1046/j.1525-1373.2000.22402.x. [DOI] [PubMed] [Google Scholar]
- Gupta V. K., Zatz J. L., Rerek M. Percutaneous absorption of sunscreens through micro-yucatan pig skin in vitro. Pharm Res. 1999 Oct;16(10):1602–1607. doi: 10.1023/a:1018916907263. [DOI] [PubMed] [Google Scholar]
- Hagedorn-Leweke U., Lippold B. C. Absorption of sunscreens and other compounds through human skin in vivo: derivation of a method to predict maximum fluxes. Pharm Res. 1995 Sep;12(9):1354–1360. doi: 10.1023/a:1016286026462. [DOI] [PubMed] [Google Scholar]
- Hayden C. G., Roberts M. S., Benson H. A. Systemic absorption of sunscreen after topical application. Lancet. 1997 Sep 20;350(9081):863–864. doi: 10.1016/S0140-6736(05)62032-6. [DOI] [PubMed] [Google Scholar]
- Jiang R., Roberts M. S., Collins D. M., Benson H. A. Absorption of sunscreens across human skin: an evaluation of commercial products for children and adults. Br J Clin Pharmacol. 1999 Oct;48(4):635–637. doi: 10.1046/j.1365-2125.1999.00056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jobling S., Reynolds T., White R., Parker M. G., Sumpter J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect. 1995 Jun;103(6):582–587. doi: 10.1289/ehp.95103582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadry A. M., Okereke C. S., Abdel-Rahman M. S., Friedman M. A., Davis R. A. Pharmacokinetics of benzophenone-3 after oral exposure in male rats. J Appl Toxicol. 1995 Mar-Apr;15(2):97–102. doi: 10.1002/jat.2550150207. [DOI] [PubMed] [Google Scholar]
- Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
- Metcalf J. L., Laws S. C., Cummings A. M. Methoxychlor mimics the action of 17 beta-estradiol on induction of uterine epidermal growth factor receptors in immature female rats. Reprod Toxicol. 1996 Sep-Oct;10(5):393–399. doi: 10.1016/0890-6238(96)00085-8. [DOI] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunez A. M., Jakowlev S., Briand J. P., Gaire M., Krust A., Rio M. C., Chambon P. Characterization of the estrogen-induced pS2 protein secreted by the human breast cancer cell line MCF-7. Endocrinology. 1987 Nov;121(5):1759–1765. doi: 10.1210/endo-121-5-1759. [DOI] [PubMed] [Google Scholar]
- Odum J., Lefevre P. A., Tittensor S., Paton D., Routledge E. J., Beresford N. A., Sumpter J. P., Ashby J. The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol. 1997 Apr;25(2):176–188. doi: 10.1006/rtph.1997.1100. [DOI] [PubMed] [Google Scholar]
- Okereke C. S., Abdel-Rhaman M. S., Friedman M. A. Disposition of benzophenone-3 after dermal administration in male rats. Toxicol Lett. 1994 Aug;73(2):113–122. doi: 10.1016/0378-4274(94)90101-5. [DOI] [PubMed] [Google Scholar]
- Okereke C. S., Barat S. A., Abdel-Rahman M. S. Safety evaluation of benzophenone-3 after dermal administration in rats. Toxicol Lett. 1995 Oct;80(1-3):61–67. doi: 10.1016/0378-4274(95)03334-h. [DOI] [PubMed] [Google Scholar]
- Okereke C. S., Kadry A. M., Abdel-Rahman M. S., Davis R. A., Friedman M. A. Metabolism of benzophenone-3 in rats. Drug Metab Dispos. 1993 Sep-Oct;21(5):788–791. [PubMed] [Google Scholar]
- Reel J. R., Lamb IV J. C., Neal B. H. Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam Appl Toxicol. 1996 Dec;34(2):288–305. doi: 10.1006/faat.1996.0198. [DOI] [PubMed] [Google Scholar]
- Schauder S., Ippen H. Contact and photocontact sensitivity to sunscreens. Review of a 15-year experience and of the literature. Contact Dermatitis. 1997 Nov;37(5):221–232. doi: 10.1111/j.1600-0536.1997.tb02439.x. [DOI] [PubMed] [Google Scholar]
- Shelby M. D., Newbold R. R., Tully D. B., Chae K., Davis V. L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996 Dec;104(12):1296–1300. doi: 10.1289/ehp.961041296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suter-Eichenbeger R., Altorfer H., Lichtensteiger W., Schlumpf M. Bioaccumulation of musk xylene (MX) in developing and adult rats of both sexes. Chemosphere. 1998 Jun;36(13):2747–2762. doi: 10.1016/s0045-6535(97)10234-x. [DOI] [PubMed] [Google Scholar]
- Suter-Eichenberger R., Boelsterli U. A., Conscience-Egli M., Lichtensteiger W., Schlumpf M. CYP 450 enzyme induction by chronic oral musk xylene in adult and developing rats. Toxicol Lett. 2000 Apr 10;115(1):73–87. doi: 10.1016/s0378-4274(00)00170-3. [DOI] [PubMed] [Google Scholar]
- Wakeling A. E., Dukes M., Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991 Aug 1;51(15):3867–3873. [PubMed] [Google Scholar]