Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Apr;109(4):319–323. doi: 10.1289/ehp.01109319

Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects.

P Penttinen 1, K L Timonen 1, P Tiittanen 1, A Mirme 1, J Ruuskanen 1, J Pekkanen 1
PMCID: PMC1240270  PMID: 11335178

Abstract

Daily variations in ambient particulate air pollution are associated with variations in respiratory lung function. It has been suggested that the effects of particulate matter may be due to particles in the ultrafine (0.01-0.1 microm) size range. Because previous studies on ultrafine particles only used self-monitored peak expiratory flow rate (PEFR), we assessed the associations between particle mass and number concentrations in several size ranges measured at a central site and measured (biweekly) spirometric lung function among a group of 54 adult asthmatics (n = 495 measurements). We also compared results to daily morning, afternoon, and evening PEFR measurements done at home (n = 7,672-8,110 measurements). The median (maximum) 24 hr number concentrations were 14,500/cm(3) (46,500/cm(3)) ultrafine particles and 800/cm(3) (2,800/cm(3)) accumulation mode (0.1-1 microm) particles. The median (maximum) mass concentration of PM(2.5) (particulate matter < 2.5 microm) and PM(10) (particulate matter < 10 microm in aerodynamic diameter) were 8.4 microg/m(3) (38.3 microg/m(3)) and 13.5 microg/m(3) (73.7 microg/m(3)), respectively. The number of accumulation mode particles was consistently inversely associated with PEFR in spirometry. Inverse, but nonsignificant, associations were observed with ultrafine particles, and no associations were observed with large particles (PM(10)). Compared to the effect estimates for self-monitored PEFR, the effect estimates for spirometric PEFR tended to be larger. The standard errors were also larger, probably due to the lower number of spirometric measurements. The present results support the need to monitor the particle number and size distributions in urban air in addition to mass.

Full Text

The Full Text of this article is available as a PDF (77.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
  2. Carter J. D., Ghio A. J., Samet J. M., Devlin R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997 Oct;146(2):180–188. doi: 10.1006/taap.1997.8254. [DOI] [PubMed] [Google Scholar]
  3. Dockery D. W., Pope C. A., 3rd Acute respiratory effects of particulate air pollution. Annu Rev Public Health. 1994;15:107–132. doi: 10.1146/annurev.pu.15.050194.000543. [DOI] [PubMed] [Google Scholar]
  4. Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
  5. Dusseldorp A., Kruize H., Brunekreef B., Hofschreuder P., de Meer G., van Oudvorst A. B. Associations of PM10 and airborne iron with respiratory health of adults living near a steel factory. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1932–1939. doi: 10.1164/ajrccm.152.6.8520758. [DOI] [PubMed] [Google Scholar]
  6. Hoek G., Brunekreef B. Effects of low-level winter air pollution concentrations on respiratory health of Dutch children. Environ Res. 1994 Feb;64(2):136–150. doi: 10.1006/enrs.1994.1012. [DOI] [PubMed] [Google Scholar]
  7. Koenig J. Q., Larson T. V., Hanley Q. S., Rebolledo V., Dumler K., Checkoway H., Wang S. Z., Lin D., Pierson W. E. Pulmonary function changes in children associated with fine particulate matter. Environ Res. 1993 Oct;63(1):26–38. doi: 10.1006/enrs.1993.1123. [DOI] [PubMed] [Google Scholar]
  8. Neas L. M., Dockery D. W., Koutrakis P., Speizer F. E. Fine particles and peak flow in children: acidity versus mass. Epidemiology. 1999 Sep;10(5):550–553. [PubMed] [Google Scholar]
  9. Oberdorster G., Gelein R. M., Ferin J., Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol. 1995 Jan-Feb;7(1):111–124. doi: 10.3109/08958379509014275. [DOI] [PubMed] [Google Scholar]
  10. Pekkanen J., Timonen K. L., Ruuskanen J., Reponen A., Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res. 1997;74(1):24–33. doi: 10.1006/enrs.1997.3750. [DOI] [PubMed] [Google Scholar]
  11. Peters A., Wichmann H. E., Tuch T., Heinrich J., Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997 Apr;155(4):1376–1383. doi: 10.1164/ajrccm.155.4.9105082. [DOI] [PubMed] [Google Scholar]
  12. Pope C. A., 3rd, Dockery D. W., Spengler J. D., Raizenne M. E. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):668–674. doi: 10.1164/ajrccm/144.3_Pt_1.668. [DOI] [PubMed] [Google Scholar]
  13. Roemer W., Hoek G., Brunekreef B., Clench-Aas J., Forsberg B., Pekkanen J., Schutz A. PM10 elemental composition and acute respiratory health effects in European children (PEACE project). Pollution Effects on Asthmatic Children in Europe. Eur Respir J. 2000 Mar;15(3):553–559. doi: 10.1034/j.1399-3003.2000.15.21.x. [DOI] [PubMed] [Google Scholar]
  14. Salvi S., Blomberg A., Rudell B., Kelly F., Sandström T., Holgate S. T., Frew A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999 Mar;159(3):702–709. doi: 10.1164/ajrccm.159.3.9709083. [DOI] [PubMed] [Google Scholar]
  15. Schlesinger R. B., Chen L. C. Comparative biological potency of acidic sulfate aerosols: implications for the interpretation of laboratory and field studies. Environ Res. 1994 Apr;65(1):69–85. doi: 10.1006/enrs.1994.1022. [DOI] [PubMed] [Google Scholar]
  16. Schwartz J., Norris G., Larson T., Sheppard L., Claiborne C., Koenig J. Episodes of high coarse particle concentrations are not associated with increased mortality. Environ Health Perspect. 1999 May;107(5):339–342. doi: 10.1289/ehp.99107339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz J., Slater D., Larson T. V., Pierson W. E., Koenig J. Q. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis. 1993 Apr;147(4):826–831. doi: 10.1164/ajrccm/147.4.826. [DOI] [PubMed] [Google Scholar]
  18. Tiittanen P., Timonen K. L., Ruuskanen J., Mirme A., Pekkanen J. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J. 1999 Feb;13(2):266–273. doi: 10.1034/j.1399-3003.1999.13b08.x. [DOI] [PubMed] [Google Scholar]
  19. Timonen K. L., Pekkanen J. Air pollution and respiratory health among children with asthmatic or cough symptoms. Am J Respir Crit Care Med. 1997 Aug;156(2 Pt 1):546–552. doi: 10.1164/ajrccm.156.2.9608044. [DOI] [PubMed] [Google Scholar]
  20. Vedal S. Ambient particles and health: lines that divide. J Air Waste Manag Assoc. 1997 May;47(5):551–581. doi: 10.1080/10473289.1997.10463922. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES