Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Apr;109(4):377–381. doi: 10.1289/ehp.01109377

The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities.

K L Kimm-Brinson 1, J S Ramsdell 1
PMCID: PMC1240278  PMID: 11335186

Abstract

Brevetoxins are lipophilic polyether toxins produced by the red tide dinoflagellate Gymnodinium breve, and their neurotoxic effects on adult animals have been documented. In this study, we characterized adverse developmental effects of brevetoxin-1 (PbTx-1) using an exposure paradigm that parallels the maternal oocyte transfer of toxin. Medaka fish (Oryzias latipes) embryos were exposed to PbTx-1 via microinjection of toxin reconstituted in a triolein oil droplet. Embryos microinjected with doses of 0.1-8.0 ng/egg (ppm) of brevetoxin-1 exhibited pronounced muscular activity (hyperkinesis) after embryonic day 4. Upon hatching, morphologic abnormalities were commonly found in embryos at the following lowest adverse effect levels: 1.0-3.0 ppm, lateral curvature of the spinal column; 3.1-3.4 ppm, herniation of brain meninges through defects in the skull; and 3.4-4.0 ppm, malpositioned eye. Hatching abnormalities were also commonly observed at brevetoxin doses of 2.0 ppm and higher with head-first, as opposed to the normal tail-first, hatching, and doses > 4.1 ng/egg produced embryos that developed but failed to hatch. Given the similarity of developmental processes found between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur among different phylogenetic classes. The observation of developmental abnormalities after PbTx-1 exposure identifies a new spectrum of adverse effects that may be expected to occur following exposure to G. breve red tide events.

Full Text

The Full Text of this article is available as a PDF (104.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando M., Saito H., Wakisaka I. Transfer of polychlorinated biphenyls (PCBs) to newborn infants through the placenta and mothers' milk. Arch Environ Contam Toxicol. 1985 Jan;14(1):51–57. doi: 10.1007/BF01055761. [DOI] [PubMed] [Google Scholar]
  2. Bossart G. D., Baden D. G., Ewing R. Y., Roberts B., Wright S. D. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol Pathol. 1998 Mar-Apr;26(2):276–282. doi: 10.1177/019262339802600214. [DOI] [PubMed] [Google Scholar]
  3. Catterall W. A., Risk M. Toxin T4(6) from Ptychodiscus brevis (formerly Gymnodinium breve) enhances activation of voltage-sensitive sodium channels by veratridine. Mol Pharmacol. 1981 Mar;19(2):345–348. [PubMed] [Google Scholar]
  4. Dechraoui M. Y., Naar J., Pauillac S., Legrand A. M. Ciguatoxins and brevetoxins, neurotoxic polyether compounds active on sodium channels. Toxicon. 1999 Jan;37(1):125–143. doi: 10.1016/s0041-0101(98)00169-x. [DOI] [PubMed] [Google Scholar]
  5. Edmunds J. S., McCarthy R. A., Ramsdell J. S. Ciguatoxin reduces larval survivability in finfish. Toxicon. 1999 Dec;37(12):1827–1832. doi: 10.1016/s0041-0101(99)00119-1. [DOI] [PubMed] [Google Scholar]
  6. Edmunds J. S., McCarthy R. A., Ramsdell J. S. Permanent and functional male-to-female sex reversal in d-rR strain medaka (Oryzias latipes) following egg microinjection of o,p'-DDT. Environ Health Perspect. 2000 Mar;108(3):219–224. doi: 10.1289/ehp.00108219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forrester D. J., Gaskin J. M., White F. H., Thompson N. P., Quick J. A., Jr, Henderson G. E., Woodard J. C., Robertson W. D. An epizootic of waterfowl associated with a red tide episode in Florida. J Wildl Dis. 1977 Apr;13(2):160–167. doi: 10.7589/0090-3558-13.2.160. [DOI] [PubMed] [Google Scholar]
  8. Lewis R. J. Ciguatoxins are potent ichthyotoxins. Toxicon. 1992 Feb;30(2):207–211. doi: 10.1016/0041-0101(92)90474-j. [DOI] [PubMed] [Google Scholar]
  9. Martin D. F., Chatterjee A. B. Isolation and characterization of a toxin from the Florida red tide organism. Nature. 1969 Jan 4;221(5175):59–59. doi: 10.1038/221059a0. [DOI] [PubMed] [Google Scholar]
  10. McFarren E. F., Silva F. J., Tanabe H., Wilson W. B., Campbell J. E., Lewis K. H. The occurrence of a ciguatera-like poison in oysters, clams, and Gymnodinium breve cultures. Toxicon. 1965 Nov;3(2):111–123. doi: 10.1016/0041-0101(65)90005-x. [DOI] [PubMed] [Google Scholar]
  11. Music S. I., Howell J. T., Brumback C. L. Red tide. Its public health implications. JFMA. 1973 Nov;60(11):27–29. [PubMed] [Google Scholar]
  12. Poli M. A., Mende T. J., Baden D. G. Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol Pharmacol. 1986 Aug;30(2):129–135. [PubMed] [Google Scholar]
  13. STARR T. J. Notes on a toxin from Gymnodinium breve. Tex Rep Biol Med. 1958;16(4):500–507. [PubMed] [Google Scholar]
  14. Spiegelstein M. Y., Paster Z., Abbott B. C. Purification and biological activity of Gymnodinium breve toxins. Toxicon. 1973 Jan;11(1):85–93. doi: 10.1016/0041-0101(73)90157-8. [DOI] [PubMed] [Google Scholar]
  15. Washburn B. S., Baden D. G., Gassman N. J., Walsh P. J. Brevetoxin: tissue distribution and effect on cytochrome P450 enzymes in fish. Toxicon. 1994 Jul;32(7):799–805. doi: 10.1016/0041-0101(94)90005-1. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES