Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Apr;109(4):383–389. doi: 10.1289/ehp.01109383

Associations of blood pressure and hypertension with lead dose measures and polymorphisms in the vitamin D receptor and delta-aminolevulinic acid dehydratase genes.

B K Lee 1, G S Lee 1, W F Stewart 1, K D Ahn 1, D Simon 1, K T Kelsey 1, A C Todd 1, B S Schwartz 1
PMCID: PMC1240279  PMID: 11335187

Abstract

Evidence suggests that lead and selected genes known to modify the toxicokinetics of lead--namely, those for the vitamin D receptor (VDR) and delta-aminolevulinic acid dehydratase (ALAD)--may independently influence blood pressure and hypertension risk. We report the relations among ALAD and VDR genotypes, three lead dose measures, and blood pressure and hypertension status in 798 Korean lead workers and 135 controls without occupational exposure to lead. Lead dose was assessed by blood lead, tibia lead measured by X-ray fluorescence, and dimercaptosuccinic acid (DMSA)-chelatable lead. Among lead workers, 9.9% (n = 79) were heterozygous for the ALAD(2) allele, and there were no ALAD(2) homozygotes; 11.2% (n = 89) had at least one copy of the VDR B allele, and 0.5% (n = 4) had the BB genotype. In linear regression models to control for covariates, VDR genotype (BB and Bb vs. bb), blood lead, tibia lead, and DMSA-chelatable lead were all positive predictors of systolic blood pressure. On average, lead workers with the VDR B allele, mainly heterozygotes, had systolic blood pressures that were 2.7-3.7 mm Hg higher than did workers with the bb genotype. VDR genotype was also associated with diastolic blood pressure; on average, lead workers with the VDR B allele had diastolic blood pressures that were 1.9-2.5 mm Hg higher than did lead workers with the VDR bb genotype (p = 0.04). VDR genotype modified the relation of age with systolic blood pressure; compared to lead workers with the VDR bb genotype, workers with the VDR B allele had larger elevations in blood pressure with increasing age. Lead workers with the VDR B allele also had a higher prevalence of hypertension compared to lead workers with the bb genotype [adjusted odds ratio (95% confidence interval) = 2.1 (1.0, 4.4), p = 0.05]. None of the lead biomarkers was associated with diastolic blood pressure, and tibia lead was the only lead dose measure that was a significant predictor of hypertension status. In contrast to VDR, ALAD genotype was not associated with the blood pressure measures and did not modify associations of the lead dose measures with any of the blood pressure measures. To our knowledge, these are the first data to suggest that the common genetic polymorphism in the VDR is associated with blood pressure and hypertension risk. We speculate that the BsmI polymorphism may be in linkage disequilibrium with another functional variant at the VDR locus or with a nearby gene.

Full Text

The Full Text of this article is available as a PDF (93.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander B. H., Checkoway H., Costa-Mallen P., Faustman E. M., Woods J. S., Kelsey K. T., van Netten C., Costa L. G. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers. Environ Health Perspect. 1998 Apr;106(4):213–216. doi: 10.1289/ehp.98106213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barger-Lux M. J., Heaney R. P., Hayes J., DeLuca H. F., Johnson M. L., Gong G. Vitamin D receptor gene polymorphism, bone mass, body size, and vitamin D receptor density. Calcif Tissue Int. 1995 Aug;57(2):161–162. doi: 10.1007/BF00298438. [DOI] [PubMed] [Google Scholar]
  3. Battistuzzi G., Petrucci R., Silvagni L., Urbani F. R., Caiola S. delta-Aminolevulinate dehydrase: a new genetic polymorphism in man. Ann Hum Genet. 1981 Jul;45(Pt 3):223–229. doi: 10.1111/j.1469-1809.1981.tb00333.x. [DOI] [PubMed] [Google Scholar]
  4. Bell P. D., Mashburn N., Unlap M. T. Renal sodium/calcium exchange; a vasodilator that is defective in salt-sensitive hypertension. Acta Physiol Scand. 2000 Jan;168(1):209–214. doi: 10.1046/j.1365-201x.2000.00671.x. [DOI] [PubMed] [Google Scholar]
  5. Bergdahl I. A., Gerhardsson L., Schütz A., Desnick R. J., Wetmur J. G., Skerfving S. Delta-aminolevulinic acid dehydratase polymorphism: influence on lead levels and kidney function in humans. Arch Environ Health. 1997 Mar-Apr;52(2):91–96. doi: 10.1080/00039899709602870. [DOI] [PubMed] [Google Scholar]
  6. Bergdahl I. A., Grubb A., Schütz A., Desnick R. J., Wetmur J. G., Sassa S., Skerfving S. Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol. 1997 Oct;81(4):153–158. doi: 10.1111/j.1600-0773.1997.tb02061.x. [DOI] [PubMed] [Google Scholar]
  7. Blumberg W. E., Eisinger J., Lamola A. A., Zuckerman D. M. Zinc protoporphyrin level in blood determined by a portable hematofluorometer: a screening device for lead poisoning. J Lab Clin Med. 1977 Apr;89(4):712–723. [PubMed] [Google Scholar]
  8. Brown A. J., Dusso A., Slatopolsky E. Vitamin D. Am J Physiol. 1999 Aug;277(2 Pt 2):F157–F175. doi: 10.1152/ajprenal.1999.277.2.F157. [DOI] [PubMed] [Google Scholar]
  9. Carling T., Kindmark A., Hellman P., Lundgren E., Ljunghall S., Rastad J., Akerström G., Melhus H. Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med. 1995 Dec;1(12):1309–1311. doi: 10.1038/nm1295-1309. [DOI] [PubMed] [Google Scholar]
  10. Cooper G. S., Umbach D. M. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res. 1996 Dec;11(12):1841–1849. doi: 10.1002/jbmr.5650111203. [DOI] [PubMed] [Google Scholar]
  11. Ferrari S., Manen D., Bonjour J. P., Slosman D., Rizzoli R. Bone mineral mass and calcium and phosphate metabolism in young men: relationships with vitamin D receptor allelic polymorphisms. J Clin Endocrinol Metab. 1999 Jun;84(6):2043–2048. doi: 10.1210/jcem.84.6.5790. [DOI] [PubMed] [Google Scholar]
  12. Fleming D. E., Chettle D. R., Wetmur J. G., Desnick R. J., Robin J. P., Boulay D., Richard N. S., Gordon C. L., Webber C. E. Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environ Res. 1998 Apr;77(1):49–61. doi: 10.1006/enrs.1997.3818. [DOI] [PubMed] [Google Scholar]
  13. Grobbee D. E., van Hooft I. M., Hofman A. Calcium metabolism and familial risk of hypertension. Semin Nephrol. 1995 Nov;15(6):512–518. [PubMed] [Google Scholar]
  14. Gross C., Musiol I. M., Eccleshall T. R., Malloy P. J., Feldman D. Vitamin D receptor gene polymorphisms: analysis of ligand binding and hormone responsiveness in cultured skin fibroblasts. Biochem Biophys Res Commun. 1998 Jan 26;242(3):467–473. doi: 10.1006/bbrc.1997.7986. [DOI] [PubMed] [Google Scholar]
  15. Gómez C., Naves M. L., Barrios Y., Díaz J. B., Fernández J. L., Salido E., Torres A., Cannata J. B. Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporos Int. 1999;10(3):175–182. doi: 10.1007/s001980050213. [DOI] [PubMed] [Google Scholar]
  16. Hamet P., Daignault-Gélinas M., Lambert J., Ledoux M., Whissell-Cambiotti L., Bellavance F., Mongeau E. Epidemiological evidence of an interaction between calcium and sodium intake impacting on blood pressure. A Montréal study. Am J Hypertens. 1992 Jun;5(6 Pt 1):378–385. doi: 10.1093/ajh/5.6.378. [DOI] [PubMed] [Google Scholar]
  17. Hatton D. C., Yue Q., McCarron D. A. Mechanisms of calcium's effects on blood pressure. Semin Nephrol. 1995 Nov;15(6):593–602. [PubMed] [Google Scholar]
  18. Heinegård D., Tiderström G. Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta. 1973 Feb 12;43(3):305–310. doi: 10.1016/0009-8981(73)90466-x. [DOI] [PubMed] [Google Scholar]
  19. Hu H., Aro A., Payton M., Korrick S., Sparrow D., Weiss S. T., Rotnitzky A. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1171–1176. [PubMed] [Google Scholar]
  20. Jorde R., Bonaa K. H. Calcium from dairy products, vitamin D intake, and blood pressure: the Tromso Study. Am J Clin Nutr. 2000 Jun;71(6):1530–1535. doi: 10.1093/ajcn/71.6.1530. [DOI] [PubMed] [Google Scholar]
  21. Jorde R., Sundsfjord J., Haug E., Bonaa K. H. Relation between low calcium intake, parathyroid hormone, and blood pressure. Hypertension. 2000 May;35(5):1154–1159. doi: 10.1161/01.hyp.35.5.1154. [DOI] [PubMed] [Google Scholar]
  22. Kikuchi R., Uemura T., Gorai I., Ohno S., Minaguchi H. Early and late postmenopausal bone loss is associated with BsmI vitamin D receptor gene polymorphism in Japanese women. Calcif Tissue Int. 1999 Feb;64(2):102–106. doi: 10.1007/s002239900586. [DOI] [PubMed] [Google Scholar]
  23. Kim R., Aro A., Rotnitzky A., Amarasiriwardena C., Hu H. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol. 1995 Sep;40(9):1475–1485. doi: 10.1088/0031-9155/40/9/007. [DOI] [PubMed] [Google Scholar]
  24. Kontula K., Välimäki S., Kainulainen K., Viitanen A. M., Keski-Oja J. Vitamin D receptor polymorphism and treatment of psoriasis with calcipotriol. Br J Dermatol. 1997 Jun;136(6):977–978. doi: 10.1111/j.1365-2133.1997.tb03955.x. [DOI] [PubMed] [Google Scholar]
  25. Kristal-Boneh E., Froom P., Yerushalmi N., Harari G., Ribak J. Calcitropic hormones and occupational lead exposure. Am J Epidemiol. 1998 Mar 1;147(5):458–463. doi: 10.1093/oxfordjournals.aje.a009471. [DOI] [PubMed] [Google Scholar]
  26. Lee B. K., Schwartz B. S., Stewart W., Ahn K. D. Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med. 1995 Jan;52(1):13–19. doi: 10.1136/oem.52.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lim S. K., Park Y. S., Park J. M., Song Y. D., Lee E. J., Kim K. R., Lee H. C., Huh K. B. Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans. J Clin Endocrinol Metab. 1995 Dec;80(12):3677–3681. doi: 10.1210/jcem.80.12.8530619. [DOI] [PubMed] [Google Scholar]
  28. Mason H. J., Somervaille L. J., Wright A. L., Chettle D. R., Scott M. C. Effect of occupational lead exposure on serum 1,25-dihydroxyvitamin D levels. Hum Exp Toxicol. 1990 Jan;9(1):29–34. doi: 10.1177/096032719000900107. [DOI] [PubMed] [Google Scholar]
  29. Miller G. D., DiRienzo D. D., Reusser M. E., McCarron D. A. Benefits of dairy product consumption on blood pressure in humans: a summary of the biomedical literature. J Am Coll Nutr. 2000 Apr;19(2 Suppl):147S–164S. doi: 10.1080/07315724.2000.10718085. [DOI] [PubMed] [Google Scholar]
  30. Morrison N. A., Qi J. C., Tokita A., Kelly P. J., Crofts L., Nguyen T. V., Sambrook P. N., Eisman J. A. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284–287. doi: 10.1038/367284a0. [DOI] [PubMed] [Google Scholar]
  31. Morrison N. A., Yeoman R., Kelly P. J., Eisman J. A. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6665–6669. doi: 10.1073/pnas.89.15.6665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nelson D. A., Vande Vord P. J., Wooley P. H. Polymorphism in the vitamin D receptor gene and bone mass in African-American and white mothers and children: a preliminary report. Ann Rheum Dis. 2000 Aug;59(8):626–630. doi: 10.1136/ard.59.8.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Onalaja A. O., Claudio L. Genetic susceptibility to lead poisoning. Environ Health Perspect. 2000 Mar;108 (Suppl 1):23–28. doi: 10.1289/ehp.00108s123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Osborne C. G., McTyre R. B., Dudek J., Roche K. E., Scheuplein R., Silverstein B., Weinberg M. S., Salkeld A. A. Evidence for the relationship of calcium to blood pressure. Nutr Rev. 1996 Dec;54(12):365–381. doi: 10.1111/j.1753-4887.1996.tb03850.x. [DOI] [PubMed] [Google Scholar]
  35. Oshima T., Young E. W. Systemic and cellular calcium metabolism and hypertension. Semin Nephrol. 1995 Nov;15(6):496–503. [PubMed] [Google Scholar]
  36. Potluri V. R., Astrin K. H., Wetmur J. G., Bishop D. F., Desnick R. J. Human delta-aminolevulinate dehydratase: chromosomal localization to 9q34 by in situ hybridization. Hum Genet. 1987 Jul;76(3):236–239. doi: 10.1007/BF00283614. [DOI] [PubMed] [Google Scholar]
  37. Resnick L. M. The role of dietary calcium in hypertension: a hierarchical overview. Am J Hypertens. 1999 Jan;12(1 Pt 1):99–112. doi: 10.1016/s0895-7061(98)00275-1. [DOI] [PubMed] [Google Scholar]
  38. Resnick L. The cellular ionic basis of hypertension and allied clinical conditions. Prog Cardiovasc Dis. 1999 Jul-Aug;42(1):1–22. doi: 10.1016/s0033-0620(99)70006-x. [DOI] [PubMed] [Google Scholar]
  39. Ruggiero M., Pacini S., Amato M., Aterini S., Chiarugi V. Association between vitamin D receptor gene polymorphism and nephrolithiasis. Miner Electrolyte Metab. 1999 May-Jun;25(3):185–190. doi: 10.1159/000057443. [DOI] [PubMed] [Google Scholar]
  40. Schwartz B. S., Lee B. K., Lee G. S., Stewart W. F., Simon D., Kelsey K., Todd A. C. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]-aminolevulinic acid dehydratase genes. Environ Health Perspect. 2000 Oct;108(10):949–954. doi: 10.1289/ehp.00108949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schwartz B. S., Lee B. K., Stewart W., Ahn K. D., Springer K., Kelsey K. Associations of delta-aminolevulinic acid dehydratase genotype with plant, exposure duration, and blood lead and zinc protoporphyrin levels in Korean lead workers. Am J Epidemiol. 1995 Oct 1;142(7):738–745. doi: 10.1093/oxfordjournals.aje.a117705. [DOI] [PubMed] [Google Scholar]
  42. Schwartz B. S., Lee B. K., Stewart W., Sithisarankul P., Strickland P. T., Ahn K. D., Kelsey K. delta-Aminolevulinic acid dehydratase genotype modifies four hour urinary lead excretion after oral administration of dimercaptosuccinic acid. Occup Environ Med. 1997 Apr;54(4):241–246. doi: 10.1136/oem.54.4.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwartz B. S., Stewart W. F. Different associations of blood lead, meso 2,3-dimercaptosuccinic acid (DMSA)-chelatable lead, and tibial lead levels with blood pressure in 543 former organolead manufacturing workers. Arch Environ Health. 2000 Mar-Apr;55(2):85–92. doi: 10.1080/00039890009603392. [DOI] [PubMed] [Google Scholar]
  44. Schwartz B. S., Stewart W. F., Kelsey K. T., Simon D., Park S., Links J. M., Todd A. C. Associations of tibial lead levels with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers. Environ Health Perspect. 2000 Mar;108(3):199–203. doi: 10.1289/ehp.00108199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sithisarankul P., Schwartz B. S., Lee B. K., Kelsey K. T., Strickland P. T. Aminolevulinic acid dehydratase genotype mediates plasma levels of the neurotoxin, 5-aminolevulinic acid, in lead-exposed workers. Am J Ind Med. 1997 Jul;32(1):15–20. doi: 10.1002/(sici)1097-0274(199707)32:1<15::aid-ajim2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  46. Smith C. M., Wang X., Hu H., Kelsey K. T. A polymorphism in the delta-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect. 1995 Mar;103(3):248–253. doi: 10.1289/ehp.95103248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sowers M. R., Wallace R. B., Lemke J. H. The association of intakes of vitamin D and calcium with blood pressure among women. Am J Clin Nutr. 1985 Jul;42(1):135–142. doi: 10.1093/ajcn/42.1.135. [DOI] [PubMed] [Google Scholar]
  48. Taymans S. E., Pack S., Pak E., Orban Z., Barsony J., Zhuang Z., Stratakis C. A. The human vitamin D receptor gene (VDR) is localized to region 12cen-q12 by fluorescent in situ hybridization and radiation hybrid mapping: genetic and physical VDR map. J Bone Miner Res. 1999 Jul;14(7):1163–1166. doi: 10.1359/jbmr.1999.14.7.1163. [DOI] [PubMed] [Google Scholar]
  49. Thomas W. J., Collins T. M. Comparison of venipuncture blood counts with microcapillary measurements in screening for anemia in one-year-old infants. J Pediatr. 1982 Jul;101(1):32–35. doi: 10.1016/s0022-3476(82)80175-3. [DOI] [PubMed] [Google Scholar]
  50. Todd A. C. Contamination of in vivo bone-lead measurements. Phys Med Biol. 2000 Jan;45(1):229–240. doi: 10.1088/0031-9155/45/1/316. [DOI] [PubMed] [Google Scholar]
  51. Todd A. C., Lee B. K., Lee G. S., Ahn K. D., Moshier E. L., Schwartz B. S. Predictors of DMSA chelatable lead, tibial lead, and blood lead in 802 Korean lead workers. Occup Environ Med. 2001 Feb;58(2):73–80. doi: 10.1136/oem.58.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wetmur J. G., Lehnert G., Desnick R. J. The delta-aminolevulinate dehydratase polymorphism: higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res. 1991 Dec;56(2):109–119. doi: 10.1016/s0013-9351(05)80001-5. [DOI] [PubMed] [Google Scholar]
  53. Ziemsen B., Angerer J., Lehnert G., Benkmann H. G., Goedde H. W. Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health. 1986;58(3):245–247. doi: 10.1007/BF00432107. [DOI] [PubMed] [Google Scholar]
  54. Zmuda J. M., Cauley J. A., Ferrell R. E. Recent progress in understanding the genetic susceptibility to osteoporosis. Genet Epidemiol. 1999;16(4):356–367. doi: 10.1002/(SICI)1098-2272(1999)16:4<356::AID-GEPI3>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES