Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Apr;109(4):399–407. doi: 10.1289/ehp.01109399

In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.

I A Meerts 1, R J Letcher 1, S Hoving 1, G Marsh 1, A Bergman 1, J G Lemmen 1, B van der Burg 1, A Brouwer 1
PMCID: PMC1240281  PMID: 11335189

Abstract

Polybrominated diphenyl ethers (PBDEs) are used in large quantities as additive flame retardants in plastics and textile materials. PBDEs are persistent compounds and have been detected in wildlife and in human adipose tissue and plasma samples. In this study, we investigated the (anti)estrogenic potencies of several PBDE congeners, three hydroxylated PBDEs (HO-PBDEs), and differently brominated bisphenol A compounds in three different cell line assays based on estrogen receptor (ER)-dependent luciferase reporter gene expression. In human T47D breast cancer cells stably transfected with an estrogen-responsive luciferase reporter gene construct (pEREtata-Luc), 11 PBDEs showed estrogenic potencies, with concentrations leading to 50% induction (EC(50)) varying from 2.5 to 7.3 microM. The luciferase induction of the most potent HO-PBDE [2-bromo-4-(2,4,6-tribromophenoxy)phenol] exceeded that of estradiol (E(2)), though at concentrations 50,000 times higher. As expected, brominated bisphenol A compounds with the lowest degree of bromination showed highest estrogenic potencies (EC(50) values of 0.5 microM for 3-monobromobisphenol A). In an ER alpha-specific, stably transfected human embryonic kidney cell line (293-ER alpha-Luc), the HO-PBDE 4-(2,4,6-tribromophenoxy)phenol was a highly potent estrogen with an EC(50) < 0.1 microM and a maximum 35- to 40-fold induction, which was similar to E(2). In an analogous ER beta-specific 293-ER betas-Luc cell line, the agonistic potency of the 4-(2,4,6-tribromophenoxy)phenol was much lower (maximum 50% induction compared to E(2)), but EC(50) values were comparable. These results indicate that several pure PBDE congeners, but especially HO-PBDEs and brominated bisphenol A-analogs, are agonists of both ER alpha and ER beta receptors, thus stimulating ER-mediated luciferase induction in vitro. These data also suggest that in vivo metabolism of PBDEs may produce more potent pseudoestrogens.

Full Text

The Full Text of this article is available as a PDF (129.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts J. M., Denison M. S., Cox M. A., Schalk M. A., Garrison P. M., Tullis K., de Haan L. H., Brouwer A. Species-specific antagonism of Ah receptor action by 2,2',5,5'-tetrachloro- and 2,2',3,3'4,4'-hexachlorobiphenyl. Eur J Pharmacol. 1995 Dec 7;293(4):463–474. doi: 10.1016/0926-6917(95)90067-5. [DOI] [PubMed] [Google Scholar]
  2. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  4. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998 Sep;8(9):827–856. doi: 10.1089/thy.1998.8.827. [DOI] [PubMed] [Google Scholar]
  5. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connor K., Ramamoorthy K., Moore M., Mustain M., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol. 1997 Jul;145(1):111–123. doi: 10.1006/taap.1997.8169. [DOI] [PubMed] [Google Scholar]
  7. Dellovade T. L., Zhu Y. S., Krey L., Pfaff D. W. Thyroid hormone and estrogen interact to regulate behavior. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12581–12586. doi: 10.1073/pnas.93.22.12581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  9. Feldman D., Krishnan A. Estrogens in unexpected places: possible implications for researchers and consumers. Environ Health Perspect. 1995 Oct;103 (Suppl 7):129–133. doi: 10.1289/ehp.95103s7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fowles J. R., Fairbrother A., Baecher-Steppan L., Kerkvliet N. I. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology. 1994 Jan 26;86(1-2):49–61. doi: 10.1016/0300-483x(94)90052-3. [DOI] [PubMed] [Google Scholar]
  11. Garrison P. M., Tullis K., Aarts J. M., Brouwer A., Giesy J. P., Denison M. S. Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam Appl Toxicol. 1996 Apr;30(2):194–203. doi: 10.1006/faat.1996.0056. [DOI] [PubMed] [Google Scholar]
  12. Hanberg A., Ståhlberg M., Georgellis A., de Wit C., Ahlborg U. G. Swedish dioxin survey: evaluation of the H-4-II E bioassay for screening environmental samples for dioxin-like enzyme induction. Pharmacol Toxicol. 1991 Dec;69(6):442–449. doi: 10.1111/j.1600-0773.1991.tb01327.x. [DOI] [PubMed] [Google Scholar]
  13. Horwitz K. B., McGuire W. L. Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J Biol Chem. 1978 Apr 10;253(7):2223–2228. [PubMed] [Google Scholar]
  14. Jobling S., Reynolds T., White R., Parker M. G., Sumpter J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect. 1995 Jun;103(6):582–587. doi: 10.1289/ehp.95103582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korach K. S., Sarver P., Chae K., McLachlan J. A., McKinney J. D. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol. 1988 Jan;33(1):120–126. [PubMed] [Google Scholar]
  16. Krishnan V., Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) as antiestrogens in MCF-7 human breast cancer cells: quantitative structure-activity relationships. Toxicol Appl Pharmacol. 1993 May;120(1):55–61. doi: 10.1006/taap.1993.1086. [DOI] [PubMed] [Google Scholar]
  17. Kuil C. W., Brouwer A., van der Saag P. T., van der Burg B. Interference between progesterone and dioxin signal transduction pathways. Different mechanisms are involved in repression by the progesterone receptor A and B isoforms. J Biol Chem. 1998 Apr 10;273(15):8829–8834. doi: 10.1074/jbc.273.15.8829. [DOI] [PubMed] [Google Scholar]
  18. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  19. Legler J., van den Brink C. E., Brouwer A., Murk A. J., van der Saag P. T., Vethaak A. D., van der Burg B. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci. 1999 Mar;48(1):55–66. doi: 10.1093/toxsci/48.1.55. [DOI] [PubMed] [Google Scholar]
  20. Lindström G., Wingfors H., Dam M., van Bavel B. Identification of 19 polybrominated diphenyl ethers (PBDEs) in long-finned pilot whale (Globicephala melas) from the Atlantic. Arch Environ Contam Toxicol. 1999 Apr;36(3):355–363. doi: 10.1007/s002449900482. [DOI] [PubMed] [Google Scholar]
  21. McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect. 1994 Mar;102(3):290–297. doi: 10.1289/ehp.94102290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meerts I. A., van Zanden J. J., Luijks E. A., van Leeuwen-Bol I., Marsh G., Jakobsson E., Bergman A., Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000 Jul;56(1):95–104. doi: 10.1093/toxsci/56.1.95. [DOI] [PubMed] [Google Scholar]
  23. Meironyté D., Norén K., Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972-1997. J Toxicol Environ Health A. 1999 Nov 26;58(6):329–341. doi: 10.1080/009841099157197. [DOI] [PubMed] [Google Scholar]
  24. Moore M., Mustain M., Daniel K., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Antiestrogenic activity of hydroxylated polychlorinated biphenyl congeners identified in human serum. Toxicol Appl Pharmacol. 1997 Jan;142(1):160–168. doi: 10.1006/taap.1996.8022. [DOI] [PubMed] [Google Scholar]
  25. Murk A. J., Legler J., Denison M. S., Giesy J. P., van de Guchte C., Brouwer A. Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol. 1996 Sep;33(1):149–160. doi: 10.1006/faat.1996.0152. [DOI] [PubMed] [Google Scholar]
  26. Orn U., Klasson-Wehler E. Metabolism of 2,2',4,4'-tetrabromodiphenyl ether in rat and mouse. Xenobiotica. 1998 Feb;28(2):199–211. [PubMed] [Google Scholar]
  27. Panno M. L., Sisci D., Salerno M., Lanzino M., Mauro L., Morrone E. G., Pezzi V., Palmero S., Fugassa E., Andò S. Effect of triiodothyronine administration on estrogen receptor contents in peripuberal Sertoli cells. Eur J Endocrinol. 1996 May;134(5):633–638. doi: 10.1530/eje.0.1340633. [DOI] [PubMed] [Google Scholar]
  28. Perez P., Pulgar R., Olea-Serrano F., Villalobos M., Rivas A., Metzler M., Pedraza V., Olea N. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ Health Perspect. 1998 Mar;106(3):167–174. doi: 10.1289/ehp.98106167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Piao Y. S., Peltoketo H., Jouppila A., Vihko R. Retinoic acids increase 17 beta-hydroxysteroid dehydrogenase type 1 expression in JEG-3 and T47D cells, but the stimulation is potentiated by epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, and cyclic adenosine 3',5'-monophosphate only in JEG-3 cells. Endocrinology. 1997 Mar;138(3):898–904. doi: 10.1210/endo.138.3.5008. [DOI] [PubMed] [Google Scholar]
  30. Routledge E. J., Sumpter J. P. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem. 1997 Feb 7;272(6):3280–3288. doi: 10.1074/jbc.272.6.3280. [DOI] [PubMed] [Google Scholar]
  31. Safe S., Wang F., Porter W., Duan R., McDougal A. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett. 1998 Dec 28;102-103:343–347. doi: 10.1016/s0378-4274(98)00331-2. [DOI] [PubMed] [Google Scholar]
  32. Sanderson J. T., Aarts J. M., Brouwer A., Froese K. L., Denison M. S., Giesy J. P. Comparison of Ah receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells: implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons. Toxicol Appl Pharmacol. 1996 Apr;137(2):316–325. doi: 10.1006/taap.1996.0086. [DOI] [PubMed] [Google Scholar]
  33. Seinen W., Lemmen J. G., Pieters R. H., Verbruggen E. M., van der Burg B. AHTN and HHCB show weak estrogenic--but no uterotrophic activity. Toxicol Lett. 1999 Dec 20;111(1-2):161–168. doi: 10.1016/s0378-4274(99)00177-0. [DOI] [PubMed] [Google Scholar]
  34. Sjödin A., Hagmar L., Klasson-Wehler E., Kronholm-Diab K., Jakobsson E., Bergman A. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 1999 Aug;107(8):643–648. doi: 10.1289/ehp.107-1566483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spink D. C., Lincoln D. W., 2nd, Dickerman H. W., Gierthy J. F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes an extensive alteration of 17 beta-estradiol metabolism in MCF-7 breast tumor cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6917–6921. doi: 10.1073/pnas.87.17.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spink D. C., Spink B. C., Cao J. Q., DePasquale J. A., Pentecost B. T., Fasco M. J., Li Y., Sutter T. R. Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis. 1998 Feb;19(2):291–298. doi: 10.1093/carcin/19.2.291. [DOI] [PubMed] [Google Scholar]
  38. Zacharewski T. R., Bondy K. L., McDonell P., Wu Z. F. Antiestrogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced pS2 expression. Cancer Res. 1994 May 15;54(10):2707–2713. [PubMed] [Google Scholar]
  39. Zava D. T., Blen M., Duwe G. Estrogenic activity of natural and synthetic estrogens in human breast cancer cells in culture. Environ Health Perspect. 1997 Apr;105 (Suppl 3):637–645. doi: 10.1289/ehp.97105s3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Boer J., Wester P. G., Klamer H. J., Lewis W. E., Boon J. P. Do flame retardants threaten ocean life? Nature. 1998 Jul 2;394(6688):28–29. doi: 10.1038/27798. [DOI] [PubMed] [Google Scholar]
  41. von Meyerinck L., Hufnagel B., Schmoldt A., Benthe H. F. Induction of rat liver microsomal cytochrome P-450 by the pentabromo diphenyl ether Bromkal 70 and half-lives of its components in the adipose tissue. Toxicology. 1990 Apr 30;61(3):259–274. doi: 10.1016/0300-483x(90)90176-h. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES