Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 May;109(5):501–507. doi: 10.1289/ehp.01109501

Examination of the melatonin hypothesis in women exposed at night to EMF or bright light.

C Graham 1, M R Cook 1, M M Gerkovich 1, A Sastre 1
PMCID: PMC1240310  PMID: 11401762

Abstract

It has been hypothesized that the increased incidence of breast cancer in industrial societies is related to greater exposure to power-frequency electric and magnetic fields (EMF) and/or the presence of high levels of light at night (LAN). EMF and LAN are said to reduce circulating levels of the hormone melatonin which, in turn, allows estrogen levels to rise and stimulate the turnover of breast epithelial stem cells and increase the risk for malignant transformation. Three laboratory-based studies, in which a total of 53 healthy young women were exposed at night to EMF or to LAN under controlled exposure conditions, were performed to determine whether such exposures reduce melatonin and are associated with further alterations in estrogen. All-night exposure to industrial-strength magnetic fields (60 Hz, 28.3 microT) had no effect on the blood levels of melatonin or estradiol. In contrast, nocturnal melatonin levels were profoundly suppressed, and the time of peak concentration was significantly delayed in women exposed to LAN, regardless of whether they were in the follicular or luteal phase of the menstrual cycle. These changes, however, were not associated with alterations in point-for-point matching measures of estradiol. Women who chronically secrete high or low amounts of melatonin each night (area-under-curve range: 86-1,296 pg/mL) also did not differ in their blood levels of estradiol. Taken together, these results are consistent with a growing body of evidence which generally suggests that environmental EMF exposure has little or no effect on the parameters measured in this report.

Full Text

The Full Text of this article is available as a PDF (87.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerstedt T., Arnetz B., Ficca G., Paulsson L. E., Kallner A. A 50-Hz electromagnetic field impairs sleep. J Sleep Res. 1999 Mar;8(1):77–81. doi: 10.1046/j.1365-2869.1999.00100.x. [DOI] [PubMed] [Google Scholar]
  2. Arnetz B. B., Berg M. Melatonin and adrenocorticotropic hormone levels in video display unit workers during work and leisure. J Occup Environ Med. 1996 Nov;38(11):1108–1110. doi: 10.1097/00043764-199611000-00010. [DOI] [PubMed] [Google Scholar]
  3. Bartsch C., Bartsch H., Fuchs U., Lippert T. H., Bellmann O., Gupta D. Stage-dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer. 1989 Jul 15;64(2):426–433. doi: 10.1002/1097-0142(19890715)64:2<426::aid-cncr2820640215>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  4. Brainard G. C., Kavet R., Kheifets L. I. The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature. J Pineal Res. 1999 Mar;26(2):65–100. doi: 10.1111/j.1600-079x.1999.tb00568.x. [DOI] [PubMed] [Google Scholar]
  5. Burch J. B., Reif J. S., Yost M. G. Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett. 1999 May 14;266(3):209–212. doi: 10.1016/s0304-3940(99)00308-0. [DOI] [PubMed] [Google Scholar]
  6. Burch J. B., Reif J. S., Yost M. G., Keefe T. J., Pitrat C. A. Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand J Work Environ Health. 1998 Jun;24(3):183–189. doi: 10.5271/sjweh.297. [DOI] [PubMed] [Google Scholar]
  7. Cohen H. D., Graham C., Cook M. R., Phelps J. W. ELF exposure facility for human testing. Bioelectromagnetics. 1992;13(3):169–182. doi: 10.1002/bem.2250130302. [DOI] [PubMed] [Google Scholar]
  8. Cook M. R., Graham C., Cohen H. D., Gerkovich M. M. A replication study of human exposure to 60-Hz fields: effects on neurobehavioral measures. Bioelectromagnetics. 1992;13(4):261–285. doi: 10.1002/bem.2250130403. [DOI] [PubMed] [Google Scholar]
  9. Cook M. R., Graham C., Kavet R., Stevens R. G., Davis S., Kheifets L. Morning urinary assessment of nocturnal melatonin secretion in older women. J Pineal Res. 2000 Jan;28(1):41–47. doi: 10.1034/j.1600-079x.2000.280106.x. [DOI] [PubMed] [Google Scholar]
  10. Dawson T. W., Caputa K., Stuchly M. A. Influence of human model resolution on computed currents induced in organs by 60-Hz magnetic fields. Bioelectromagnetics. 1997;18(7):478–490. [PubMed] [Google Scholar]
  11. Dawson T. W., Caputa K., Stuchly M. A. Magnetic induction at 60 Hz in the human heart: a comparison between the in situ and isolated scenarios. Bioelectromagnetics. 1999;20(4):233–243. [PubMed] [Google Scholar]
  12. Doynov P., Cohen H. D., Cook M. R., Graham C. Test facility for human exposure to AC and DC magnetic fields. Bioelectromagnetics. 1999;20(2):101–111. doi: 10.1002/(sici)1521-186x(1999)20:2<101::aid-bem4>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  13. Geoffriau M., Brun J., Chazot G., Claustrat B. The physiology and pharmacology of melatonin in humans. Horm Res. 1998;49(3-4):136–141. doi: 10.1159/000023160. [DOI] [PubMed] [Google Scholar]
  14. Graham C., Cook M. R., Cohen H. D., Gerkovich M. M. Dose response study of human exposure to 60 Hz electric and magnetic fields. Bioelectromagnetics. 1994;15(5):447–463. doi: 10.1002/bem.2250150508. [DOI] [PubMed] [Google Scholar]
  15. Graham C., Cook M. R., Kavet R., Sastre A., Smith D. K. Prediction of nocturnal plasma melatonin from morning urinary measures. J Pineal Res. 1998 May;24(4):230–238. doi: 10.1111/j.1600-079x.1998.tb00538.x. [DOI] [PubMed] [Google Scholar]
  16. Graham C., Cook M. R., Riffle D. W., Gerkovich M. M., Cohen H. D. Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics. 1996;17(4):263–273. doi: 10.1002/(SICI)1521-186X(1996)17:4<263::AID-BEM2>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  17. Graham C., Cook M. R., Riffle D. W. Human melatonin during continuous magnetic field exposure. Bioelectromagnetics. 1997;18(2):166–171. [PubMed] [Google Scholar]
  18. Graham C., Cook M. R., Sastre A., Riffle D. W., Gerkovich M. M. Multi-night exposure to 60 Hz magnetic fields: effects on melatonin and its enzymatic metabolite. J Pineal Res. 2000 Jan;28(1):1–8. doi: 10.1034/j.1600-079x.2000.280101.x. [DOI] [PubMed] [Google Scholar]
  19. Hahn R. A. Profound bilateral blindness and the incidence of breast cancer. Epidemiology. 1991 May;2(3):208–210. doi: 10.1097/00001648-199105000-00008. [DOI] [PubMed] [Google Scholar]
  20. Juutilainen J., Stevens R. G., Anderson L. E., Hansen N. H., Kilpeläinen M., Kumlin T., Laitinen J. T., Sobel E., Wilson B. W. Nocturnal 6-hydroxymelatonin sulfate excretion in female workers exposed to magnetic fields. J Pineal Res. 2000 Mar;28(2):97–104. doi: 10.1034/j.1600-079x.2001.280205.x. [DOI] [PubMed] [Google Scholar]
  21. Kato M., Honma K., Shigemitsu T., Shiga Y. Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics. 1993;14(2):97–106. doi: 10.1002/bem.2250140203. [DOI] [PubMed] [Google Scholar]
  22. Lambrozo J, Touitou Y, Dab W. Exploring the EMF-Melatonin Connection: A Review of the Possible Effects of 50/60-Hz Electric and Magnetic Fields on Melatonin Secretion. Int J Occup Environ Health. 1996 Jan;2(1):37–47. doi: 10.1179/oeh.1996.2.1.37. [DOI] [PubMed] [Google Scholar]
  23. Mallo C., Zaidan R., Galy G., Vermeulen E., Brun J., Chazot G., Claustrat B. Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection. Eur J Clin Pharmacol. 1990;38(3):297–301. doi: 10.1007/BF00315035. [DOI] [PubMed] [Google Scholar]
  24. Panzer A., Viljoen M. The validity of melatonin as an oncostatic agent. J Pineal Res. 1997 May;22(4):184–202. doi: 10.1111/j.1600-079x.1997.tb00322.x. [DOI] [PubMed] [Google Scholar]
  25. Parkin D. M., Pisani P., Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer. 1993 Jun 19;54(4):594–606. doi: 10.1002/ijc.2910540413. [DOI] [PubMed] [Google Scholar]
  26. Pfluger D. H., Minder C. E. Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. J Pineal Res. 1996 Sep;21(2):91–100. doi: 10.1111/j.1600-079x.1996.tb00275.x. [DOI] [PubMed] [Google Scholar]
  27. Sastre A., Cook M. R., Graham C. Nocturnal exposure to intermittent 60 Hz magnetic fields alters human cardiac rhythm. Bioelectromagnetics. 1998;19(2):98–106. [PubMed] [Google Scholar]
  28. Selmaoui B., Lambrozo J., Touitou Y. Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. Life Sci. 1996;58(18):1539–1549. doi: 10.1016/0024-3205(96)00128-2. [DOI] [PubMed] [Google Scholar]
  29. Skene D. J., Bojkowski C. J., Currie J. E., Wright J., Boulter P. S., Arendt J. 6-sulphatoxymelatonin production in breast cancer patients. J Pineal Res. 1990;8(3):269–276. doi: 10.1111/j.1600-079x.1990.tb00686.x. [DOI] [PubMed] [Google Scholar]
  30. Stevens R. G., Davis S., Mirick D. K., Kheifets L., Kaune W. Alcohol consumption and urinary concentration of 6-sulfatoxymelatonin in healthy women. Epidemiology. 2000 Nov;11(6):660–665. doi: 10.1097/00001648-200011000-00008. [DOI] [PubMed] [Google Scholar]
  31. Stevens R. G., Davis S. The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect. 1996 Mar;104 (Suppl 1):135–140. doi: 10.1289/ehp.96104s1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stevens R. G. Electric power use and breast cancer: a hypothesis. Am J Epidemiol. 1987 Apr;125(4):556–561. doi: 10.1093/oxfordjournals.aje.a114569. [DOI] [PubMed] [Google Scholar]
  33. Tamarkin L., Danforth D., Lichter A., DeMoss E., Cohen M., Chabner B., Lippman M. Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast cancer. Science. 1982 May 28;216(4549):1003–1005. doi: 10.1126/science.7079745. [DOI] [PubMed] [Google Scholar]
  34. Trinder J., Armstrong S. M., O'Brien C., Luke D., Martin M. J. Inhibition of melatonin secretion onset by low levels of illumination. J Sleep Res. 1996 Jun;5(2):77–82. doi: 10.1046/j.1365-2869.1996.00011.x. [DOI] [PubMed] [Google Scholar]
  35. Tynes T., Andersen A., Langmark F. Incidence of cancer in Norwegian workers potentially exposed to electromagnetic fields. Am J Epidemiol. 1992 Jul 1;136(1):81–88. doi: 10.1093/oxfordjournals.aje.a116423. [DOI] [PubMed] [Google Scholar]
  36. Wolff M. S., Collman G. W., Barrett J. C., Huff J. Breast cancer and environmental risk factors: epidemiological and experimental findings. Annu Rev Pharmacol Toxicol. 1996;36:573–596. doi: 10.1146/annurev.pa.36.040196.003041. [DOI] [PubMed] [Google Scholar]
  37. Yellon S. M. 60-Hz magnetic field exposure effects on the melatonin rhythm and photoperiod control of reproduction. Am J Physiol. 1996 May;270(5 Pt 1):E816–E821. doi: 10.1152/ajpendo.1996.270.5.E816. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES