Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 May;109(5):515–521. doi: 10.1289/ehp.01109515

Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats.

H M Yang 1, J M Antonini 1, M W Barger 1, L Butterworth 1, B R Roberts 1, J K Ma 1, V Castranova 1, J Y Ma 1
PMCID: PMC1240312  PMID: 11401764

Abstract

In this study, we tested the hypothesis that exposure to diesel exhaust particles (DEP) may increase susceptibility of the host to pulmonary infection. Male Sprague-Dawley rats received a single dose of DEP (5 mg/kg), carbon black (CB, 5 mg/kg), or saline intratracheally. Three days later, the rats were inoculated intratracheally with approximately 5,000 Listeria monocytogenes and sacrificed at 3, 5, and 7 days postinfection, and we determined the number of viable Listeria in the left lobe of lungs. The remaining lungs underwent bronchoalveolar lavage (BAL) and the retrieved BAL cells were identified and counted. Luminol-dependent chemiluminescence, a measure of reactive oxygen species (ROS) formation, generated by BAL cells was monitored and the levels of nitric oxide and tumor necrosis factor (TNF)-[alpha] produced by macrophages in culture were determined. At 7 days postinfection, we excised the lung-draining lymph nodes and phenotyped the lymphocyte subpopulations. Exposure of rats to DEP, but not to CB, decreased the clearance of Listeria from the lungs. Listeria-induced generation of luminol-dependent chemiluminescence by pulmonary phagocytes decreased by exposure to DEP but not CB. Similarly, Listeria-induced production of NO by alveolar macrophages was negated at 3, 5, and 7 days after inoculation in DEP-exposed rats. In contrast, CB exposure had no effect on Listeria-induced NO production at 3 days after infection and had a substantially smaller effect than DEP at later days. Exposure to DEP or CB resulted in enlarged lung-draining lymph nodes and increased the number and percentage of CD4(+) and CD8(+) T cells. These results showed that exposure to DEP decreased the ability of macrophages to produce antimicrobial oxidants in response to Listeria, which may play a role in the increased susceptibility of rats to pulmonary infection. This DEP-induced suppression is caused partially by chemicals adsorbed onto the carbon core of DEP, because impaired macrophage function and decreased Listeria clearance were not observed following exposure to CB.

Full Text

The Full Text of this article is available as a PDF (98.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonini J. M., Van Dyke K., Ye Z., DiMatteo M., Reasor M. J. Introduction of luminol-dependent chemiluminescence as a method to study silica inflammation in the tissue and phagocytic cells of rat lung. Environ Health Perspect. 1994 Dec;102 (Suppl 10):37–42. doi: 10.1289/ehp.94102s1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battigelli M. C., Hengstenberg F., Mannella R. J., Thomas A. P. Mucociliary activity. Arch Environ Health. 1966 Apr;12(4):460–466. doi: 10.1080/00039896.1966.10664407. [DOI] [PubMed] [Google Scholar]
  3. Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
  4. Beckerman K. P., Rogers H. W., Corbett J. A., Schreiber R. D., McDaniel M. L., Unanue E. R. Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes. J Immunol. 1993 Feb 1;150(3):888–895. [PubMed] [Google Scholar]
  5. Bice D. E., Mauderly J. L., Jones R. K., McClellan R. O. Effects of inhaled diesel exhaust on immune responses after lung immunization. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1075–1086. doi: 10.1016/0272-0590(85)90143-5. [DOI] [PubMed] [Google Scholar]
  6. Boockvar K. S., Granger D. L., Poston R. M., Maybodi M., Washington M. K., Hibbs J. B., Jr, Kurlander R. L. Nitric oxide produced during murine listeriosis is protective. Infect Immun. 1994 Mar;62(3):1089–1100. doi: 10.1128/iai.62.3.1089-1100.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buchmeier N. A., Schreiber R. D. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7404–7408. doi: 10.1073/pnas.82.21.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell P. A. Macrophage-Listeria interactions. Immunol Ser. 1994;60:313–328. [PubMed] [Google Scholar]
  9. Castranova V., Bowman L., Reasor M. J., Lewis T., Tucker J., Miles P. R. The response of rat alveolar macrophages to chronic inhalation of coal dust and/or diesel exhaust. Environ Res. 1985 Apr;36(2):405–419. doi: 10.1016/0013-9351(85)90034-9. [DOI] [PubMed] [Google Scholar]
  10. Chan T. L., Lee P. S., Hering W. E. Deposition and clearance of inhaled diesel exhaust particles in the respiratory tract of Fischer rats. J Appl Toxicol. 1981 Apr;1(2):77–82. doi: 10.1002/jat.2550010206. [DOI] [PubMed] [Google Scholar]
  11. Crebelli R., Conti L., Crochi B., Carere A., Bertoli C., Del Giacomo N. The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res. 1995 Mar;346(3):167–172. doi: 10.1016/0165-7992(95)90049-7. [DOI] [PubMed] [Google Scholar]
  12. Diaz-Sanchez D., Dotson A. R., Takenaka H., Saxon A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest. 1994 Oct;94(4):1417–1425. doi: 10.1172/JCI117478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diaz-Sanchez D., Tsien A., Fleming J., Saxon A. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol. 1997 Mar 1;158(5):2406–2413. [PubMed] [Google Scholar]
  14. Dinauer M. C., Deck M. B., Unanue E. R. Mice lacking reduced nicotinamide adenine dinucleotide phosphate oxidase activity show increased susceptibility to early infection with Listeria monocytogenes. J Immunol. 1997 Jun 15;158(12):5581–5583. [PubMed] [Google Scholar]
  15. Dockery D. W., Pope C. A., 3rd Acute respiratory effects of particulate air pollution. Annu Rev Public Health. 1994;15:107–132. doi: 10.1146/annurev.pu.15.050194.000543. [DOI] [PubMed] [Google Scholar]
  16. Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
  17. Edelman J., Cardozo C., Lesser M. Lipopolysaccharide stimulates alveolar macrophage adherence in vivo and in vitro. Agents Actions. 1989 Mar;26(3-4):287–291. doi: 10.1007/BF01967292. [DOI] [PubMed] [Google Scholar]
  18. Fearon D. T., Locksley R. M. The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50–53. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  19. Fujimaki H., Saneyoshi K., Shiraishi F., Imai T., Endo T. Inhalation of diesel exhaust enhances antigen-specific IgE antibody production in mice. Toxicology. 1997 Jan 15;116(1-3):227–233. doi: 10.1016/s0300-483x(96)03539-1. [DOI] [PubMed] [Google Scholar]
  20. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  21. Hahon N., Booth J. A., Green F., Lewis T. R. Influenza virus infection in mice after exposure to coal dust and diesel engine emissions. Environ Res. 1985 Jun;37(1):44–60. doi: 10.1016/0013-9351(85)90048-9. [DOI] [PubMed] [Google Scholar]
  22. Hahon N., Booth J. A., Wheeler R. Activity of diesel engine emission particulates on the interferon system. Environ Res. 1982 Aug;28(2):443–455. doi: 10.1016/0013-9351(82)90141-4. [DOI] [PubMed] [Google Scholar]
  23. Hiura T. S., Kaszubowski M. P., Li N., Nel A. E. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 1999 Nov 15;163(10):5582–5591. [PubMed] [Google Scholar]
  24. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  25. Jakab G. J., Risby T. H., Sehnert S. S., Hmieleski R. R., Farrington J. E. Suppression of alveolar macrophage membrane receptor-mediated phagocytosis by model and actual particle-adsorbate complexes. Initial contact with the alveolar macrophage membrane. Environ Health Perspect. 1990 Jun;86:337–344. doi: 10.1289/ehp.9086337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jakab G. J. The toxicologic interactions resulting from inhalation of carbon black and acrolein on pulmonary antibacterial and antiviral defenses. Toxicol Appl Pharmacol. 1993 Aug;121(2):167–175. doi: 10.1006/taap.1993.1142. [DOI] [PubMed] [Google Scholar]
  27. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  28. Luster M. I., Munson A. E., Thomas P. T., Holsapple M. P., Fenters J. D., White K. L., Jr, Lauer L. D., Germolec D. R., Rosenthal G. J., Dean J. H. Development of a testing battery to assess chemical-induced immunotoxicity: National Toxicology Program's guidelines for immunotoxicity evaluation in mice. Fundam Appl Toxicol. 1988 Jan;10(1):2–19. doi: 10.1016/0272-0590(88)90247-3. [DOI] [PubMed] [Google Scholar]
  29. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Medzhitov R., Janeway C. A., Jr Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997 Feb;9(1):4–9. doi: 10.1016/s0952-7915(97)80152-5. [DOI] [PubMed] [Google Scholar]
  31. Mielke M. E., Ehlers S., Hahn H. The role of cytokines in experimental listeriosis. Immunobiology. 1993 Nov;189(3-4):285–315. doi: 10.1016/S0171-2985(11)80363-3. [DOI] [PubMed] [Google Scholar]
  32. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pope C. A., 3rd, Dockery D. W., Spengler J. D., Raizenne M. E. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):668–674. doi: 10.1164/ajrccm/144.3_Pt_1.668. [DOI] [PubMed] [Google Scholar]
  34. Pope C. A., 3rd, Thun M. J., Namboodiri M. M., Dockery D. W., Evans J. S., Speizer F. E., Heath C. W., Jr Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669. [DOI] [PubMed] [Google Scholar]
  35. Prasad S. B., Rao V. S., Mannix R. C., Phalen R. F. Effects of pollutant atmospheres on surface receptors of pulmonary macrophages. J Toxicol Environ Health. 1988;24(3):385–402. doi: 10.1080/15287398809531169. [DOI] [PubMed] [Google Scholar]
  36. Reasor M. J., McCloud C. M., DiMatteo M., Schafer R., Ima A., Lemaire I. Effects of amiodarone-induced phospholipidosis on pulmonary host defense functions in rats. Proc Soc Exp Biol Med. 1996 Apr;211(4):346–352. doi: 10.3181/00379727-211-43979. [DOI] [PubMed] [Google Scholar]
  37. Rogers H. W., Unanue E. R. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun. 1993 Dec;61(12):5090–5096. doi: 10.1128/iai.61.12.5090-5096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sagai M., Saito H., Ichinose T., Kodama M., Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol Med. 1993 Jan;14(1):37–47. doi: 10.1016/0891-5849(93)90507-q. [DOI] [PubMed] [Google Scholar]
  39. Salvi S., Blomberg A., Rudell B., Kelly F., Sandström T., Holgate S. T., Frew A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999 Mar;159(3):702–709. doi: 10.1164/ajrccm.159.3.9709083. [DOI] [PubMed] [Google Scholar]
  40. Schwartz J., Dockery D. W., Neas L. M. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc. 1996 Oct;46(10):927–939. [PubMed] [Google Scholar]
  41. Sibille Y., Reynolds H. Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis. 1990 Feb;141(2):471–501. doi: 10.1164/ajrccm/141.2.471. [DOI] [PubMed] [Google Scholar]
  42. Takenaka H., Zhang K., Diaz-Sanchez D., Tsien A., Saxon A. Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. J Allergy Clin Immunol. 1995 Jan;95(1 Pt 1):103–115. doi: 10.1016/s0091-6749(95)70158-3. [DOI] [PubMed] [Google Scholar]
  43. Tripp C. S., Unanue E. R. Macrophage production of IL12 is a critical link between the innate and specific immune responses to Listeria. Res Immunol. 1995 Sep-Oct;146(7-8):515–520. doi: 10.1016/0923-2494(96)83025-2. [DOI] [PubMed] [Google Scholar]
  44. Unanue E. R. Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol. 1997 Feb;9(1):35–43. doi: 10.1016/s0952-7915(97)80156-2. [DOI] [PubMed] [Google Scholar]
  45. Van Loveren H., Rombout P. J., Wagenaar S. S., Walvoort H. C., Vos J. G. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection. Toxicol Appl Pharmacol. 1988 Jul;94(3):374–393. doi: 10.1016/0041-008x(88)90279-7. [DOI] [PubMed] [Google Scholar]
  46. Yang H. M., Barger M. W., Castranova V., Ma J. K., Yang J. J., Ma J. Y. Effects of diesel exhaust particles (DEP), carbon black, and silica on macrophage responses to lipopolysaccharide: evidence of DEP suppression of macrophage activity. J Toxicol Environ Health A. 1999 Nov 12;58(5):261–278. doi: 10.1080/009841099157232. [DOI] [PubMed] [Google Scholar]
  47. Yang H. M., Ma J. Y., Castranova V., Ma J. K. Effects of diesel exhaust particles on the release of interleukin-1 and tumor necrosis factor-alpha from rat alveolar macrophages. Exp Lung Res. 1997 May-Jun;23(3):269–284. doi: 10.3109/01902149709087372. [DOI] [PubMed] [Google Scholar]
  48. Yoshino S., Sagai M. Enhancement of collagen-induced arthritis in mice by diesel exhaust particles. J Pharmacol Exp Ther. 1999 Aug;290(2):524–529. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES