Abstract
To confirm that arsenic (As) induces oxidative DNA damage in phytohemagglutinin (PHA)-stimulated and unstimulated human lymphocytes, we used the alkaline comet assay combined with specific enzyme [formamidopyrimidine-DNA glycosylase (FPG)] digestion to measure As-induced base damage. The results showed that the enzyme-sensitive sites were readily detected with the alkaline comet assay after the cells were treated with 10 microM As for 2 hr. The repair patterns observed for FPG-created DNA single strand breaks (SSBs) in As-treated cells were comparable to those in hydrogen peroxide (H(2)O(2))-treated cells. The enzyme-created SSBs, As-induced base damage, were more significant in PHA-stimulated lymphocytes. About 63% and 68% of SSBs induced by As and H(2)O(2), respectively, were repaired in PHA-stimulated lymphocytes by 2-hr repair incubation, but about 34% and 43%, respectively, were repaired in unstimulated cells. About 40% and 49% of base damage induced by As and H(2)O(2), respectively, were repaired in PHA-stimulated lymphocytes, but about 19% and 21%, respectively, were repaired in unstimulated cells. These results indicated that As induced oxidative DNA damage in human lymphocytes at micromolar concentrations. The damaged bases could be chiefly purines or formamidopyrimidines. Like the damage induced by H(2)O(2), As-induced DNA damage was repaired more slowly in unstimulated lymphocytes.
Full Text
The Full Text of this article is available as a PDF (53.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asagoshi K., Yamada T., Terato H., Ohyama Y., Monden Y., Arai T., Nishimura S., Aburatani H., Lindahl T., Ide H. Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine. J Biol Chem. 2000 Feb 18;275(7):4956–4964. doi: 10.1074/jbc.275.7.4956. [DOI] [PubMed] [Google Scholar]
- Banáth J. P., Wallace S. S., Thompson J., Olive P. L. Radiation-induced DNA base damage detected in individual aerobic and hypoxic cells with endonuclease III and formamidopyrimidine-glycosylase. Radiat Res. 1999 May;151(5):550–558. [PubMed] [Google Scholar]
- Barchowsky A., Klei L. R., Dudek E. J., Swartz H. M., James P. E. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999 Dec;27(11-12):1405–1412. doi: 10.1016/s0891-5849(99)00186-0. [DOI] [PubMed] [Google Scholar]
- Cadet J., Berger M., Douki T., Ravanat J. L. Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol. 1997;131:1–87. doi: 10.1007/3-540-61992-5_5. [DOI] [PubMed] [Google Scholar]
- Cadet J., Bourdat A. G., D'Ham C., Duarte V., Gasparutto D., Romieu A., Ravanat J. L. Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutat Res. 2000 Apr;462(2-3):121–128. doi: 10.1016/s1383-5742(00)00022-3. [DOI] [PubMed] [Google Scholar]
- Chen Y. C., Lin-Shiau S. Y., Lin J. K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol. 1998 Nov;177(2):324–333. doi: 10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Collins A. R., Dobson V. L., Dusinská M., Kennedy G., Stetina R. The comet assay: what can it really tell us? Mutat Res. 1997 Apr 29;375(2):183–193. doi: 10.1016/s0027-5107(97)00013-4. [DOI] [PubMed] [Google Scholar]
- Collins A. R., Ma A. G., Duthie S. J. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res. 1995 Jan;336(1):69–77. doi: 10.1016/0921-8777(94)00043-6. [DOI] [PubMed] [Google Scholar]
- Fornace A. J., Jr Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution. Mutat Res. 1982 Jun;94(2):263–276. doi: 10.1016/0027-5107(82)90290-1. [DOI] [PubMed] [Google Scholar]
- Frankenberg-Schwager M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation. Radiother Oncol. 1989 Apr;14(4):307–320. doi: 10.1016/0167-8140(89)90143-6. [DOI] [PubMed] [Google Scholar]
- Föhe C., Dikomey E. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract. Int J Radiat Biol. 1994 Dec;66(6):697–704. [PubMed] [Google Scholar]
- Hei T. K., Liu S. X., Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8103–8107. doi: 10.1073/pnas.95.14.8103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu J. J., Dubin N., Kurland D., Ma B. L., Roush G. C. The effects of hydrogen peroxide on DNA repair activities. Mutat Res. 1995 Mar;336(2):193–201. doi: 10.1016/0921-8777(94)00054-a. [DOI] [PubMed] [Google Scholar]
- Jing Y., Dai J., Chalmers-Redman R. M., Tatton W. G., Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999 Sep 15;94(6):2102–2111. [PubMed] [Google Scholar]
- Jing Y., Dai J., Chalmers-Redman R. M., Tatton W. G., Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999 Sep 15;94(6):2102–2111. [PubMed] [Google Scholar]
- Lee T. C., Ho I. C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol. 1995;69(7):498–504. doi: 10.1007/s002040050204. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat Res. 2000 Apr;462(2-3):129–135. doi: 10.1016/s1383-5742(00)00024-7. [DOI] [PubMed] [Google Scholar]
- Liu F., Jan K. Y. DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med. 2000 Jan 1;28(1):55–63. doi: 10.1016/s0891-5849(99)00196-3. [DOI] [PubMed] [Google Scholar]
- Lynn S., Gurr J. R., Lai H. T., Jan K. Y. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res. 2000 Mar 17;86(5):514–519. doi: 10.1161/01.res.86.5.514. [DOI] [PubMed] [Google Scholar]
- Matsui M., Nishigori C., Toyokuni S., Takada J., Akaboshi M., Ishikawa M., Imamura S., Miyachi Y. The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease. J Invest Dermatol. 1999 Jul;113(1):26–31. doi: 10.1046/j.1523-1747.1999.00630.x. [DOI] [PubMed] [Google Scholar]
- Nordenson I., Beckman L. Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered. 1991;41(1):71–73. doi: 10.1159/000153979. [DOI] [PubMed] [Google Scholar]
- Paterson M. C., Setlow R. B. Endonucleolytic activity from Micrococcus luteus that acts on -ray-induced damage in plasmid DNA of Escherichia coli minicells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2927–2931. doi: 10.1073/pnas.69.10.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
- Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int. 1999 Feb;49(2):91–102. doi: 10.1046/j.1440-1827.1999.00829.x. [DOI] [PubMed] [Google Scholar]
- Vallyathan V., Shi X., Castranova V. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis. Environ Health Perspect. 1998 Oct;106 (Suppl 5):1151–1155. doi: 10.1289/ehp.98106s51151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang T. S., Shu Y. F., Liu Y. C., Jan K. Y., Huang H. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology. 1997 Sep 5;121(3):229–237. doi: 10.1016/s0300-483x(97)00071-1. [DOI] [PubMed] [Google Scholar]