Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Jun;109(6):597–604. doi: 10.1289/ehp.01109597

Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods.

M Lynberg 1, J R Nuckols 1, P Langlois 1, D Ashley 1, P Singer 1, P Mendola 1, C Wilkes 1, H Krapfl 1, E Miles 1, V Speight 1, B Lin 1, L Small 1, A Miles 1, M Bonin 1, P Zeitz 1, A Tadkod 1, J Henry 1, M B Forrester 1
PMCID: PMC1240342  PMID: 11445514

Abstract

We conducted a field study in Corpus Christi, Texas, and Cobb County, Georgia, to evaluate exposure measures for disinfection by-products, with special emphasis on trihalomethanes (THMs). Participants were mothers living in either geographic area who had given birth to healthy infants from June 1998 through May 1999. We assessed exposure by sampling blood and water and obtaining information about water use habits and tap water characteristics. Two 10-mL whole blood samples were collected from each participant before and immediately after her shower. Levels of individual THM species (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were measured in whole blood [parts per trillion (pptr)] and in water samples (parts per billion). In the Corpus Christi water samples, brominated compounds accounted for 71% of the total THM concentration by weight; in Cobb County, chloroform accounted for 88%. Significant differences in blood THM levels were observed between study locations. For example, the median baseline blood level of bromoform was 0.3 pptr and 3.5 pptr for participants in Cobb County and Corpus Christi, respectively (p = 0.0001). Differences were most striking in blood obtained after showering. For bromoform, the median blood levels were 0.5 pptr and 17 pptr for participants in Cobb County and Corpus Christi, respectively (p = 0.0001). These results suggest that blood levels of THM species vary substantially across populations, depending on both water quality characteristics and water use activities. Such variation has important implications for epidemiologic studies of the potential health effects of disinfection by-products.

Full Text

The Full Text of this article is available as a PDF (90.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggazzotti G., Fantuzzi G., Righi E., Predieri G. Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Sci Total Environ. 1998 Jun 30;217(1-2):155–163. doi: 10.1016/s0048-9697(98)00174-0. [DOI] [PubMed] [Google Scholar]
  2. Andelman J. B. Inhalation exposure in the home to volatile organic contaminants of drinking water. Sci Total Environ. 1985 Dec;47:443–460. doi: 10.1016/0048-9697(85)90349-3. [DOI] [PubMed] [Google Scholar]
  3. Ashley D. L., Bonin M. A., Cardinali F. L., McCraw J. M., Holler J. S., Needham L. L., Patterson D. G., Jr Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem. 1992 May 1;64(9):1021–1029. doi: 10.1021/ac00033a011. [DOI] [PubMed] [Google Scholar]
  4. Ashley D. L., Bonin M. A., Cardinali F. L., McCraw J. M., Wooten J. V. Measurement of volatile organic compounds in human blood. Environ Health Perspect. 1996 Oct;104 (Suppl 5):871–877. doi: 10.1289/ehp.96104s5871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashley D. L., Prah J. D. Time dependence of blood concentrations during and after exposure to a mixture of volatile organic compounds. Arch Environ Health. 1997 Jan-Feb;52(1):26–33. doi: 10.1080/00039899709603796. [DOI] [PubMed] [Google Scholar]
  6. Backer L. C., Ashley D. L., Bonin M. A., Cardinali F. L., Kieszak S. M., Wooten J. V. Household exposures to drinking water disinfection by-products: whole blood trihalomethane levels. J Expo Anal Environ Epidemiol. 2000 Jul-Aug;10(4):321–326. doi: 10.1038/sj.jea.7500098. [DOI] [PubMed] [Google Scholar]
  7. Bove F. J., Fulcomer M. C., Klotz J. B., Esmart J., Dufficy E. M., Savrin J. E. Public drinking water contamination and birth outcomes. Am J Epidemiol. 1995 May 1;141(9):850–862. doi: 10.1093/oxfordjournals.aje.a117521. [DOI] [PubMed] [Google Scholar]
  8. Cardinali F. L., McCraw J. M., Ashley D. L., Bonin M., Wooten J. Treatment of vacutainers for use in the analysis of volatile organic compounds in human blood at the low parts-per-trillion level. J Chromatogr Sci. 1995 Oct;33(10):557–560. doi: 10.1093/chromsci/33.10.557. [DOI] [PubMed] [Google Scholar]
  9. Cleek R. L., Bunge A. L. A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm Res. 1993 Apr;10(4):497–506. doi: 10.1023/a:1018981515480. [DOI] [PubMed] [Google Scholar]
  10. Gallagher M. D., Nuckols J. R., Stallones L., Savitz D. A. Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology. 1998 Sep;9(5):484–489. [PubMed] [Google Scholar]
  11. Gordon S. M., Wallace L. A., Callahan P. J., Kenny D. V., Brinkman M. C. Effect of water temperature on dermal exposure to chloroform. Environ Health Perspect. 1998 Jun;106(6):337–345. doi: 10.1289/ehp.98106337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klotz J. B., Pyrch L. A. Neural tube defects and drinking water disinfection by-products. Epidemiology. 1999 Jul;10(4):383–390. doi: 10.1097/00001648-199907000-00005. [DOI] [PubMed] [Google Scholar]
  13. Kramer M. D., Lynch C. F., Isacson P., Hanson J. W. The association of waterborne chloroform with intrauterine growth retardation. Epidemiology. 1992 Sep;3(5):407–413. doi: 10.1097/00001648-199209000-00005. [DOI] [PubMed] [Google Scholar]
  14. Maxwell N. I., Burmaster D. E., Ozonoff D. Trihalomethanes and maximum contaminant levels: the significance of inhalation and dermal exposures to chloroform in household water. Regul Toxicol Pharmacol. 1991 Dec;14(3):297–312. doi: 10.1016/0273-2300(91)90032-q. [DOI] [PubMed] [Google Scholar]
  15. Murray F. J., Schwetz B. A., McBride J. G., Staples R. E. Toxicity of inhaled chloroform in pregnant mice and their offspring. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):515–522. doi: 10.1016/0041-008x(79)90406-x. [DOI] [PubMed] [Google Scholar]
  16. Narotsky M. G., Kavlock R. J. A multidisciplinary approach to toxicological screening: II. Developmental toxicity. J Toxicol Environ Health. 1995 Jun;45(2):145–171. doi: 10.1080/15287399509531987. [DOI] [PubMed] [Google Scholar]
  17. Narotsky M. G., Pegram R. A., Kavlock R. J. Effect of dosing vehicle on the developmental toxicity of bromodichloromethane and carbon tetrachloride in rats. Fundam Appl Toxicol. 1997 Nov;40(1):30–36. doi: 10.1006/faat.1997.2376. [DOI] [PubMed] [Google Scholar]
  18. Nise G., Attewell R., Skerfving S., Orbaek P. Elimination of toluene from venous blood and adipose tissue after occupational exposure. Br J Ind Med. 1989 Jun;46(6):407–411. doi: 10.1136/oem.46.6.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pegram R. A., Andersen M. E., Warren S. H., Ross T. M., Claxton L. D. Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane off chloroform. Toxicol Appl Pharmacol. 1997 May;144(1):183–188. doi: 10.1006/taap.1997.8123. [DOI] [PubMed] [Google Scholar]
  20. Pellizzari E. D., Wallace L. A., Gordon S. M. Elimination kinetics of volatile organics in humans using breath measurements. J Expo Anal Environ Epidemiol. 1992 Jul-Sep;2(3):341–355. [PubMed] [Google Scholar]
  21. Reif J. S., Hatch M. C., Bracken M., Holmes L. B., Schwetz B. A., Singer P. C. Reproductive and developmental effects of disinfection by-products in drinking water. Environ Health Perspect. 1996 Oct;104(10):1056–1061. doi: 10.1289/ehp.961041056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Savitz D. A., Andrews K. W., Pastore L. M. Drinking water and pregnancy outcome in central North Carolina: source, amount, and trihalomethane levels. Environ Health Perspect. 1995 Jun;103(6):592–596. doi: 10.1289/ehp.95103592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waller K., Swan S. H., DeLorenze G., Hopkins B. Trihalomethanes in drinking water and spontaneous abortion. Epidemiology. 1998 Mar;9(2):134–140. [PubMed] [Google Scholar]
  24. Weisel C. P., Jo W. K. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water. Environ Health Perspect. 1996 Jan;104(1):48–51. doi: 10.1289/ehp.9610448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weisel C. P., Kim H., Haltmeier P., Klotz J. B. Exposure estimates to disinfection by-products of chlorinated drinking water. Environ Health Perspect. 1999 Feb;107(2):103–110. doi: 10.1289/ehp.99107103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wilkes C. R., Small M. J., Davidson C. I., Andelman J. B. Modeling the effects of water usage and co-behavior on inhalation exposures to contaminants volatilized from household water. J Expo Anal Environ Epidemiol. 1996 Oct-Dec;6(4):393–412. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES