Abstract
Although succimer (Chemet, meso-2,3-dimercaptosuccinic acid, DMSA) is considered to be a safe and effective chelating agent for the treatment of lead poisoning in humans, there is concern that it may increase the gastrointestinal (GI) absorption and retention of Pb from exposures suffered concurrent with treatment. This concern is justified because the availability of Pb-safe housing during outpatient treatment with oral succimer is limited. We used a juvenile nonhuman primate model of moderate childhood Pb intoxication and a sensitive double stable Pb isotope tracer methodology to determine whether oral succimer chelation affects the GI absorption and whole-body retention of Pb. Infant rhesus monkeys (n = 17) were exposed to Pb daily for 1 year postpartum to reach and maintain a target blood lead (BPb) level of 35-40 microg/dL. Animals were administered succimer (n = 9) or vehicle (n = 8) over two successive 19 day succimer treatment regimens beginning at 53 and 65 weeks of age. The present study was conducted over the second chelation regimen only. Animals received a single intravenous (iv) dose of stable (204)Pb tracer (5 microg, 24.5 nmol) followed by a single oral dose of stable (206)Pb tracer (72.6 microg, 352 nmol) immediately before chelation, in order to specifically evaluate GI Pb absorption and whole-body Pb retention with treatment. We collected complete urine and fecal samples over the first 5 days and whole blood over the first 8 days of treatment for analyses of stable Pb isotopes using magnetic sector inductively-coupled plasma mass spectrometry. Results indicate that succimer significantly reduced the GI absorption of Pb (vehicle, 64.9% +/- 5.5; succimer, 37.0% +/- 5.8; mean +/- SEM). Succimer also significantly increased the urinary excretion of endogenous Pb by approximately 4-fold over the vehicle treatment, while endogenous fecal Pb excretion was decreased by approximately 33%. Finally, although succimer reduced the whole-body retention of endogenous Pb by approximately 10% compared to vehicle, the majority (77%) of the administered internal dose of Pb tracer was retained in the body when assessed after 5 days of treatment. These data do not support the concern that succimer treatment increases GI Pb absorption.
Full Text
The Full Text of this article is available as a PDF (90.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aposhian H. V., Aposhian M. M. meso-2,3-Dimercaptosuccinic acid: chemical, pharmacological and toxicological properties of an orally effective metal chelating agent. Annu Rev Pharmacol Toxicol. 1990;30:279–306. doi: 10.1146/annurev.pa.30.040190.001431. [DOI] [PubMed] [Google Scholar]
- Chisolm J. J., Jr BAL, EDTA, DMSA and DMPS in the treatment of lead poisoning in children. J Toxicol Clin Toxicol. 1992;30(4):493–504. doi: 10.3109/15563659209017937. [DOI] [PubMed] [Google Scholar]
- Cikrt M. Biliary excretion of 203 Hg, 64 Cu, 52 Mn, and 210 Pb in the rat. Br J Ind Med. 1972;29(1):74–80. [PMC free article] [PubMed] [Google Scholar]
- Conrad M. E., Barton J. C. Factors affecting the absorption and excretion of lead in the rat. Gastroenterology. 1978 Apr;74(4):731–740. [PubMed] [Google Scholar]
- Cremin J. D., Jr, Luck M. L., Laughlin N. K., Smith D. R. Efficacy of succimer chelation for reducing brain lead in a primate model of human lead exposure. Toxicol Appl Pharmacol. 1999 Dec 15;161(3):283–293. doi: 10.1006/taap.1999.8807. [DOI] [PubMed] [Google Scholar]
- Dart R. C., Hurlbut K. M., Maiorino R. M., Mayersohn M., Aposhian H. V., Hassen L. V. Pharmacokinetics of meso-2,3-dimercaptosuccinic acid in patients with lead poisoning and in healthy adults. J Pediatr. 1994 Aug;125(2):309–316. doi: 10.1016/s0022-3476(94)70217-9. [DOI] [PubMed] [Google Scholar]
- Diamond G. L., Goodrum P. E., Felter S. P., Ruoff W. L. Gastrointestinal absorption of metals. Drug Chem Toxicol. 1998 May;21(2):223–251. doi: 10.3109/01480549809011649. [DOI] [PubMed] [Google Scholar]
- Goyer R. A., Cherian M. G., Jones M. M., Reigart J. R. Role of chelating agents for prevention, intervention, and treatment of exposures to toxic metals. Environ Health Perspect. 1995 Nov;103(11):1048–1052. doi: 10.1289/ehp.951031048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graziano J. H., Lolacono N. J., Meyer P. Dose-response study of oral 2,3-dimercaptosuccinic acid in children with elevated blood lead concentrations. J Pediatr. 1988 Oct;113(4):751–757. doi: 10.1016/s0022-3476(88)80396-2. [DOI] [PubMed] [Google Scholar]
- Graziano J. H., Lolacono N. J., Moulton T., Mitchell M. E., Slavkovich V., Zarate C. Controlled study of meso-2,3-dimercaptosuccinic acid for the management of childhood lead intoxication. J Pediatr. 1992 Jan;120(1):133–139. doi: 10.1016/s0022-3476(05)80618-3. [DOI] [PubMed] [Google Scholar]
- Graziano J. H. Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Toxicol. 1986 May-Jun;1(3):155–162. doi: 10.1007/BF03259834. [DOI] [PubMed] [Google Scholar]
- Hursh J. B., Schraub A., Sattler E. L., Hofmann H. P. Fate of 212Pb inhaled by human subjects. Health Phys. 1969 Mar;16(3):257–267. doi: 10.1097/00004032-196903000-00001. [DOI] [PubMed] [Google Scholar]
- Jugo S., Maljković T., Kostial K. Influence of chelating agents on the gastrointestinal absorption of lead. Toxicol Appl Pharmacol. 1975 Nov;34(2):259–263. doi: 10.1016/0041-008x(75)90030-7. [DOI] [PubMed] [Google Scholar]
- Kapoor S. C., Wielopolski L., Graziano J. H., LoIacono N. J. Influence of 2,3-dimercaptosuccinic acid on gastrointestinal lead absorption and whole-body lead retention. Toxicol Appl Pharmacol. 1989 Mar 1;97(3):525–529. doi: 10.1016/0041-008x(89)90257-3. [DOI] [PubMed] [Google Scholar]
- Keller C. A., Doherty R. A. Distribution and excretion of lead in young and adult female mice. Environ Res. 1980 Feb;21(1):217–228. doi: 10.1016/0013-9351(80)90024-9. [DOI] [PubMed] [Google Scholar]
- Lanphear B. P., Howard C., Eberly S., Auinger P., Kolassa J., Weitzman M., Schaffer S. J., Alexander K. Primary prevention of childhood lead exposure: A randomized trial of dust control. Pediatrics. 1999 Apr;103(4 Pt 1):772–777. doi: 10.1542/peds.103.4.772. [DOI] [PubMed] [Google Scholar]
- Lanphear B. P., Winter N. L., Apetz L., Eberly S., Weitzman M. A randomized trial of the effect of dust control on children's blood lead levels. Pediatrics. 1996 Jul;98(1):35–40. [PubMed] [Google Scholar]
- Laughlin N. K., Bushnell P. J., Bowman R. E. Lead exposure and diet: differential effects on social development in the rhesus monkey. Neurotoxicol Teratol. 1991 Jul-Aug;13(4):429–440. doi: 10.1016/0892-0362(91)90092-b. [DOI] [PubMed] [Google Scholar]
- Laughlin N. K., Lasky R. E., Giles N. L., Luck M. L. Lead effects on neurobehavioral development in the neonatal rhesus monkey (Macaca mulatta). Neurotoxicol Teratol. 1999 Nov-Dec;21(6):627–638. doi: 10.1016/s0892-0362(99)00036-7. [DOI] [PubMed] [Google Scholar]
- Liang Y. Y., Marlowe C., Waddell W. J. Disposition of [14C]dimercaptosuccinic acid in mice. Fundam Appl Toxicol. 1986 Apr;6(3):532–540. [PubMed] [Google Scholar]
- Liebelt E. L., Shannon M., Graef J. W. Efficacy of oral meso-2,3-dimercaptosuccinic acid therapy for low-level childhood plumbism. J Pediatr. 1994 Feb;124(2):313–317. doi: 10.1016/s0022-3476(94)70326-4. [DOI] [PubMed] [Google Scholar]
- McGown E. L., Tillotson J. A., Knudsen J. J., Dumlao C. R. Biological behavior and metabolic fate of the BAL analogues DMSA and DMPS. Proc West Pharmacol Soc. 1984;27:169–176. [PubMed] [Google Scholar]
- Melman S. T., Nimeh J. W., Anbar R. D. Prevalence of elevated blood lead levels in an inner-city pediatric clinic population. Environ Health Perspect. 1998 Oct;106(10):655–657. doi: 10.1289/ehp.106-1533171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman H. L. Childhood lead poisoning: the promise and abandonment of primary prevention. Am J Public Health. 1998 Dec;88(12):1871–1877. doi: 10.2105/ajph.88.12.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
- O'Flaherty E. J., Inskip M. J., Franklin C. A., Durbin P. W., Manton W. I., Baccanale C. L. Evaluation and modification of a physiologically based model of lead kinetics using data from a sequential isotope study in cynomolgus monkeys. Toxicol Appl Pharmacol. 1998 Mar;149(1):1–16. doi: 10.1006/taap.1997.8328. [DOI] [PubMed] [Google Scholar]
- Pappas J. B., Nuttall K. L., Ahlquist J. T., Allen E. M., Banner W., Jr Oral dimercaptosuccinic acid and ongoing exposure to lead: effects on heme synthesis and lead distribution in a rat model. Toxicol Appl Pharmacol. 1995 Jul;133(1):121–129. doi: 10.1006/taap.1995.1133. [DOI] [PubMed] [Google Scholar]
- Pirkle J. L., Kaufmann R. B., Brody D. J., Hickman T., Gunter E. W., Paschal D. C. Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect. 1998 Nov;106(11):745–750. doi: 10.1289/ehp.98106745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pounds J. G., Marlar R. J., Allen J. R. Metabolism of lead-210 in juvenile and adult rhesus monkeys (Macaca mulatta). Bull Environ Contam Toxicol. 1978 Jun;19(6):684–691. doi: 10.1007/BF01685858. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Calacsan C., Woolard D., Luck M., Cremin J., Laughlin N. K. Succimer and the urinary excretion of essential elements in a primate model of childhood lead exposure. Toxicol Sci. 2000 Apr;54(2):473–480. doi: 10.1093/toxsci/54.2.473. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Flegal A. R. Stable isotopic tracers of lead mobilized by DMSA chelation in low lead-exposed rats. Toxicol Appl Pharmacol. 1992 Sep;116(1):85–91. doi: 10.1016/0041-008x(92)90148-l. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Markowitz M. E., Crick J., Rosen J. F., Flegal A. R. The effects of succimer on the absorption of lead in adults determined by using the stable isotope 204Pb. Environ Res. 1994 Oct;67(1):39–53. doi: 10.1006/enrs.1994.1063. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Osterloh J. D., Niemeyer S., Flegal A. R. Stable isotope labeling of lead compartments in rats with ultralow lead concentrations. Environ Res. 1992 Apr;57(2):190–207. doi: 10.1016/s0013-9351(05)80079-9. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Woolard D., Luck M. L., Laughlin N. K. Succimer and the reduction of tissue lead in juvenile monkeys. Toxicol Appl Pharmacol. 2000 Aug 1;166(3):230–240. doi: 10.1006/taap.2000.8973. [DOI] [PubMed] [Google Scholar]
- Willes R. F., Lok E., Truelove J. F., Sundaram A. Retention and tissue distribution of 210Pb (NO3)2 administered orally to infant and adult monkeys. J Toxicol Environ Health. 1977 Oct;3(3):395–406. doi: 10.1080/15287397709529572. [DOI] [PubMed] [Google Scholar]
- Zheng W., Maiorino R. M., Brendel K., Aposhian H. V. Determination and metabolism of dithiol chelating agents. VII. Biliary excretion of dithiols and their interactions with cadmium and metallothionein. Fundam Appl Toxicol. 1990 Apr;14(3):598–607. doi: 10.1016/0272-0590(90)90264-k. [DOI] [PubMed] [Google Scholar]
- Ziegler E. E., Edwards B. B., Jensen R. L., Mahaffey K. R., Fomon S. J. Absorption and retention of lead by infants. Pediatr Res. 1978 Jan;12(1):29–34. doi: 10.1203/00006450-197801000-00008. [DOI] [PubMed] [Google Scholar]
