Abstract
Chlorpyrifos targets mammalian brain development through a combination of effects directed at cholinergic receptors and intracellular signaling cascades that are involved in cell differentiation. We used sea urchin embryos as an invertebrate model system to explore the cellular mechanisms underlying the actions of chlorpyrifos and to delineate the critical period of developmental vulnerability. Sea urchin embryos and larvae were exposed to chlorpyrifos at different stages of development ranging from early cell cleavages through the prism stage. Although early cleavages were unaffected even at high chlorpyrifos concentrations, micromolar concentrations added at the mid-blastula stage evoked a prominent change in cell phenotype and overall larval structure, with appearance of pigmented cells followed by their accumulation in an extralarval cap that was extruded from the animal pole. At higher concentrations (20-40 microM), these abnormal cells constituted over 90% of the total cell number. Studies with cholinergic receptor blocking agents and protein kinase C inhibitors indicated two distinct types of effects, one mediated through stimulation of nicotinic cholinergic receptors and the other targeting intracellular signaling. The effects of chlorpyrifos were not mimicked by chlorpyrifos oxon, the active metabolite that inhibits cholinesterase, nor by nonorganophosphate cholinesterase inhibitors. Dieldrin, an organochlorine that targets GABA(A )receptors, was similarly ineffective. The effects of chlorpyrifos and its underlying cholinergic and signaling-related mechanisms parallel prior findings in mammalian embryonic central nervous system. Invertebrate test systems may thus provide both a screening procedure for potential neuroteratogenesis by organophosphate-related compounds, as well as a system with which to uncover novel mechanisms underlying developmental vulnerability.
Full Text
The Full Text of this article is available as a PDF (217.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auman J. T., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure targets multiple proteins governing the hepatic adenylyl cyclase signaling cascade: implications for neurotoxicity. Brain Res Dev Brain Res. 2000 May 11;121(1):19–27. doi: 10.1016/s0165-3806(00)00021-3. [DOI] [PubMed] [Google Scholar]
- Bagchi D., Bagchi M., Hassoun E. A., Stohs S. J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995 Dec 15;104(1-3):129–140. doi: 10.1016/0300-483x(95)03156-a. [DOI] [PubMed] [Google Scholar]
- Bagchi D., Bhattacharya G., Stohs S. J. In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides. Toxicology. 1996 Aug 1;112(1):57–68. doi: 10.1016/0300-483x(96)03350-1. [DOI] [PubMed] [Google Scholar]
- Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
- Brannen K. C., Devaud L. L., Liu J., Lauder J. M. Prenatal exposure to neurotoxicants dieldrin or lindane alters tert-butylbicyclophosphorothionate binding to GABA(A) receptors in fetal rat brainstem. Dev Neurosci. 1998;20(1):34–41. doi: 10.1159/000017296. [DOI] [PubMed] [Google Scholar]
- Buznikov G. A., Kost A. N., Kucherova N. F., Mndzhoyan A. L., Suvorov N. N., Berdysheva L. V. The role of neurohumours in early embryogenesis. 3. Pharmacological analysis of the role of neurohumours in cleavage divisions. J Embryol Exp Morphol. 1970 Jun;23(3):549–569. [PubMed] [Google Scholar]
- Buznikov G. A., Rakich L. Cholinoreceptors of early (preneural) sea urchin embryos. Neurosci Behav Physiol. 2000 Jan-Feb;30(1):53–62. doi: 10.1007/BF02461392. [DOI] [PubMed] [Google Scholar]
- Buznikov G. A., Shmukler Y. B., Lauder J. M. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol. 1996 Oct;16(5):537–559. doi: 10.1007/BF02152056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
- Cao C. J., Mioduszewski R. J., Menking D. E., Valdes J. J., Katz E. J., Eldefrawi M. E., Eldefrawi A. T. Cytotoxicity of organophosphate anticholinesterases. In Vitro Cell Dev Biol Anim. 1999 Oct;35(9):493–500. doi: 10.1007/s11626-999-0059-8. [DOI] [PubMed] [Google Scholar]
- Chanda S. M., Pope C. N. Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav. 1996 Apr;53(4):771–776. doi: 10.1016/0091-3057(95)02105-1. [DOI] [PubMed] [Google Scholar]
- Chaudhuri J., Chakraborti T. K., Chanda S., Pope C. N. Differential modulation of organophosphate-sensitive muscarinic receptors in rat brain by parathion and chlorpyrifos. J Biochem Toxicol. 1993 Dec;8(4):207–216. doi: 10.1002/jbt.2570080406. [DOI] [PubMed] [Google Scholar]
- Cosenza M. E., Bidanset J. Effects of chlorpyrifos on neuronal development in rat embryo midbrain micromass cultures. Vet Hum Toxicol. 1995 Apr;37(2):118–121. [PubMed] [Google Scholar]
- Crumpton T. L., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res. 2000 Feb 28;857(1-2):87–98. doi: 10.1016/s0006-8993(99)02357-4. [DOI] [PubMed] [Google Scholar]
- Crumpton T. L., Seidler F. J., Slotkin T. A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res Dev Brain Res. 2000 Jun 30;121(2):189–195. doi: 10.1016/s0165-3806(00)00045-6. [DOI] [PubMed] [Google Scholar]
- Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
- Dam K., Seidler F. J., Slotkin T. A. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Brain Res Dev Brain Res. 2000 Jun 30;121(2):179–187. doi: 10.1016/s0165-3806(00)00044-4. [DOI] [PubMed] [Google Scholar]
- Dam K., Seidler F. J., Slotkin T. A. Chlorpyrifos releases norepinephrine from adult and neonatal rat brain synaptosomes. Brain Res Dev Brain Res. 1999 Dec 10;118(1-2):129–133. doi: 10.1016/s0165-3806(99)00139-x. [DOI] [PubMed] [Google Scholar]
- Dam K., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res. 1998 Jun 15;108(1-2):39–45. doi: 10.1016/s0165-3806(98)00028-5. [DOI] [PubMed] [Google Scholar]
- Das K. P., Barone S., Jr Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217–230. doi: 10.1006/taap.1999.8767. [DOI] [PubMed] [Google Scholar]
- Davis D. L., Ahmed A. K. Exposures from indoor spraying of chlorpyrifos pose greater health risks to children than currently estimated. Environ Health Perspect. 1998 Jun;106(6):299–301. doi: 10.1289/ehp.98106299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrich M., Correll L., Veronesi B. Acetylcholinesterase and neuropathy target esterase inhibitions in neuroblastoma cells to distinguish organophosphorus compounds causing acute and delayed neurotoxicity. Fundam Appl Toxicol. 1997 Jul;38(1):55–63. doi: 10.1006/faat.1997.2330. [DOI] [PubMed] [Google Scholar]
- Falugi C. Localization and possible role of molecules associated with the cholinergic system during "non-nervous" developmental events. Eur J Histochem. 1993;37(4):287–294. [PubMed] [Google Scholar]
- Fenske R. A., Black K. G., Elkner K. P., Lee C. L., Methner M. M., Soto R. Potential exposure and health risks of infants following indoor residential pesticide applications. Am J Public Health. 1990 Jun;80(6):689–693. doi: 10.2105/ajph.80.6.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurunathan S., Robson M., Freeman N., Buckley B., Roy A., Meyer R., Bukowski J., Lioy P. J. Accumulation of chlorpyrifos on residential surfaces and toys accessible to children. Environ Health Perspect. 1998 Jan;106(1):9–16. doi: 10.1289/ehp.981069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafson T., Toneby M. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp Cell Res. 1970 Sep;62(1):102–117. doi: 10.1016/0014-4827(79)90512-3. [DOI] [PubMed] [Google Scholar]
- Huff R. A., Abou-Donia M. B. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology. 1995 Summer;16(2):281–290. [PubMed] [Google Scholar]
- Huff R. A., Corcoran J. J., Anderson J. K., Abou-Donia M. B. Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther. 1994 Apr;269(1):329–335. [PubMed] [Google Scholar]
- Hunter D. L., Lassiter T. L., Padilla S. Gestational exposure to chlorpyrifos: comparative distribution of trichloropyridinol in the fetus and dam. Toxicol Appl Pharmacol. 1999 Jul 1;158(1):16–23. doi: 10.1006/taap.1999.8689. [DOI] [PubMed] [Google Scholar]
- Ivonnet P. I., Chambers E. L. Nicotinic acetylcholine receptors of the neuronal type occur in the plasma membrane of sea urchin eggs. Zygote. 1997 Aug;5(3):277–287. doi: 10.1017/s0967199400003737. [DOI] [PubMed] [Google Scholar]
- Katz E. J., Cortes V. I., Eldefrawi M. E., Eldefrawi A. T. Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol. 1997 Oct;146(2):227–236. doi: 10.1006/taap.1997.8201. [DOI] [PubMed] [Google Scholar]
- Landrigan P. J., Claudio L., Markowitz S. B., Berkowitz G. S., Brenner B. L., Romero H., Wetmur J. G., Matte T. D., Gore A. C., Godbold J. H. Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect. 1999 Jun;107 (Suppl 3):431–437. doi: 10.1289/ehp.99107s3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W., Casida J. E. Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol Lett. 1998 Sep 15;98(3):139–146. doi: 10.1016/s0378-4274(98)00116-7. [DOI] [PubMed] [Google Scholar]
- Liu J., Brannen K. C., Grayson D. R., Morrow A. L., Devaud L. L., Lauder J. M. Prenatal exposure to the pesticide dieldrin or the GABA(A) receptor antagonist bicuculline differentially alters expression of GABA(A) receptor subunit mRNAs in fetal rat brainstem. Dev Neurosci. 1998;20(1):83–92. doi: 10.1159/000017302. [DOI] [PubMed] [Google Scholar]
- Liu J., Pope C. N. Comparative presynaptic neurochemical changes in rat striatum following exposure to chlorpyrifos or parathion. J Toxicol Environ Health A. 1998 Apr 10;53(7):531–544. doi: 10.1080/009841098159123. [DOI] [PubMed] [Google Scholar]
- Liu J., Pope C. N. Effects of chlorpyrifos on high-affinity choline uptake and [3H]hemicholinium-3 binding in rat brain. Fundam Appl Toxicol. 1996 Nov;34(1):84–90. doi: 10.1006/faat.1996.0178. [DOI] [PubMed] [Google Scholar]
- May M. Disturbing behavior: neurotoxic effects in children. Environ Health Perspect. 2000 Jun;108(6):A262–A267. doi: 10.1289/ehp.108-a262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monnet-Tschudi F., Zurich M. G., Schilter B., Costa L. G., Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol. 2000 Jun 15;165(3):175–183. doi: 10.1006/taap.2000.8934. [DOI] [PubMed] [Google Scholar]
- Morale A., Coniglio L., Angelini C., Cimoli G., Bolla A., Alleteo D., Russo P., Falugi C. Biological effects of a neurotoxic pesticide at low concentrations on sea urchin early development. A terathogenic assay. Chemosphere. 1998 Dec;37(14-15):3001–3010. doi: 10.1016/s0045-6535(98)00341-5. [DOI] [PubMed] [Google Scholar]
- Nagata K., Huang C. S., Song J. H., Narahashi T. Direct actions of anticholinesterases on the neuronal nicotinic acetylcholine receptor channels. Brain Res. 1997 Sep 26;769(2):211–218. doi: 10.1016/s0006-8993(97)00707-5. [DOI] [PubMed] [Google Scholar]
- Narahashi T., Ginsburg K. S., Nagata K., Song J. H., Tatebayashi H. Ion channels as targets for insecticides. Neurotoxicology. 1998 Aug-Oct;19(4-5):581–590. [PubMed] [Google Scholar]
- Padilla S., Buzzard J., Moser V. C. Comparison of the role of esterases in the differential age-related sensitivity to chlorpyrifos and methamidophos. Neurotoxicology. 2000 Feb-Apr;21(1-2):49–56. [PubMed] [Google Scholar]
- Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
- Roy T. S., Andrews J. E., Seidler F. J., Slotkin T. A. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology. 1998 Aug;58(2):62–68. doi: 10.1002/(SICI)1096-9926(199808)58:2<62::AID-TERA7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- Roy T. S., Andrews J. E., Seidler F. J., Slotkin T. A. Nicotine evokes cell death in embryonic rat brain during neurulation. J Pharmacol Exp Ther. 1998 Dec;287(3):1136–1144. [PubMed] [Google Scholar]
- Shmukier Y. B., Buznikov G. A. Functional coupling of neurotransmitters with second messengers during cleavage divisions: facts and hypotheses. Perspect Dev Neurobiol. 1998;5(4):469–480. [PubMed] [Google Scholar]
- Slotkin T. A. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999 Feb;107 (Suppl 1):71–80. doi: 10.1289/ehp.99107s171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slotkin T. A., Orband-Miller L., Queen K. L. Development of [3H]nicotine binding sites in brain regions of rats exposed to nicotine prenatally via maternal injections or infusions. J Pharmacol Exp Ther. 1987 Jul;242(1):232–237. [PubMed] [Google Scholar]
- Song X., Seidler F. J., Saleh J. L., Zhang J., Padilla S., Slotkin T. A. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol. 1997 Jul;145(1):158–174. doi: 10.1006/taap.1997.8171. [DOI] [PubMed] [Google Scholar]
- Song X., Violin J. D., Seidler F. J., Slotkin T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):182–191. doi: 10.1006/taap.1998.8424. [DOI] [PubMed] [Google Scholar]
- Steingart R. A., Barg J., Maslaton J., Nesher M., Yanai J. Pre- and postsynaptic alterations in the septohippocampal cholinergic innervations after prenatal exposure to drugs. Brain Res Bull. 1998 Jun;46(3):203–209. doi: 10.1016/s0361-9230(97)00454-1. [DOI] [PubMed] [Google Scholar]
- Steingart R. A., Silverman W. F., Barron S., Slotkin T. A., Awad Y., Yanai J. Neural grafting reverses prenatal drug-induced alterations in hippocampal PKC and related behavioral deficits. Brain Res Dev Brain Res. 2000 Dec 29;125(1-2):9–19. doi: 10.1016/s0165-3806(00)00123-1. [DOI] [PubMed] [Google Scholar]
- Ward T. R., Mundy W. R. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res Bull. 1996;39(1):49–55. doi: 10.1016/0361-9230(95)02044-6. [DOI] [PubMed] [Google Scholar]
- Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]