Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Jul;109(7):669–673. doi: 10.1289/ehp.01109669

Endosulfan exposure disrupts pheromonal systems in the red-spotted newt: a mechanism for subtle effects of environmental chemicals.

D Park 1, S C Hempleman 1, C R Propper 1
PMCID: PMC1240369  PMID: 11485864

Abstract

Because chemicals introduced into the environment by humans can affect both long-term survivorship and reproduction of amphibians, discovering the specific mechanisms through which these chemicals act may facilitate the development of plans for amphibian conservation. We investigated the amphibian pheromonal system as a potential target of common environmental chemicals. By treating female red-spotted newts, Notophthalmus viridescens, to a commonly used insecticide, endosulfan, we found that the pheromonal system is highly susceptible to low-concentration exposure. The impairment of the pheromonal system directly led to disrupted mate choice and lowered mating success. There were no other notable physiologic or behavioral changes demonstrated by the animals at the insecticide concentrations administered. Our findings suggest that the amphibian pheromonal system is one of the systems subject to subtle negative effects of environmental chemicals.

Full Text

The Full Text of this article is available as a PDF (100.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand M., Agrawal A. K., Gopal K., Sur R. N., Seth P. K. Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and [3H]quinuclidinyl benzilate in pigeon brain. Environ Res. 1986 Aug;40(2):421–426. doi: 10.1016/s0013-9351(86)80117-7. [DOI] [PubMed] [Google Scholar]
  2. Anand M., Mehrotra S., Gopal K., Sur R. N., Chandra S. V. Role of neurotransmitters in endosulfan-induced aggressive behaviour in normal and lesioned rats. Toxicol Lett. 1985 Jan;24(1):79–84. doi: 10.1016/0378-4274(85)90143-2. [DOI] [PubMed] [Google Scholar]
  3. Araújo A. C., Telles D. L., Gorni R., Lima L. L. Endosulfan residues in Brazilian tomatoes and their impact on public health and the environment. Bull Environ Contam Toxicol. 1999 Jun;62(6):671–676. doi: 10.1007/s001289900926. [DOI] [PubMed] [Google Scholar]
  4. Barlow S. M. Dilemmas facing regulatory and advisory bodies dealing with conflicting results. Chemosphere. 1999 Oct;39(8):1287–1292. doi: 10.1016/s0045-6535(99)00196-4. [DOI] [PubMed] [Google Scholar]
  5. Carey C. Infectious disease and worldwide declines of amphibian populations, with comments on emerging diseases in coral reef organisms and in humans. Environ Health Perspect. 2000 Mar;108 (Suppl 1):143–150. doi: 10.1289/ehp.00108s1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gopal K., Khanna R. N., Anand M., Gupta G. S. The acute toxicity of endosulfan to fresh-water organisms. Toxicol Lett. 1981 Mar;7(6):453–456. doi: 10.1016/0378-4274(81)90092-8. [DOI] [PubMed] [Google Scholar]
  7. Harris M. L., Chora L., Bishop C. A., Bogart J. P. Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus. Bull Environ Contam Toxicol. 2000 Feb;64(2):263–270. doi: 10.1007/s001289910039. [DOI] [PubMed] [Google Scholar]
  8. Houlahan J. E., Findlay C. S., Schmidt B. R., Meyer A. H., Kuzmin S. L. Quantitative evidence for global amphibian population declines. Nature. 2000 Apr 13;404(6779):752–755. doi: 10.1038/35008052. [DOI] [PubMed] [Google Scholar]
  9. Inouchi J., Wang D., Jiang X. C., Kubie J., Halpern M. Electrophysiological analysis of the nasal chemical senses in garter snakes. Brain Behav Evol. 1993;41(3-5):171–182. doi: 10.1159/000113835. [DOI] [PubMed] [Google Scholar]
  10. Jin L., Tran D. Q., Ide C. F., McLachlan J. A., Arnold S. F. Several synthetic chemicals inhibit progesterone receptor-mediated transactivation in yeast. Biochem Biophys Res Commun. 1997 Apr 7;233(1):139–146. doi: 10.1006/bbrc.1997.6417. [DOI] [PubMed] [Google Scholar]
  11. Johnson P. T., Lunde K. B., Ritchie E. G., Launer A. E. The effect of trematode infection on amphibian limb development and survivorship. Science. 1999 Apr 30;284(5415):802–804. doi: 10.1126/science.284.5415.802. [DOI] [PubMed] [Google Scholar]
  12. Kikuyama S., Nakano R., Yasumasu I. Synergistic action of prolactin and androgen on the cloacal glands of the newt. Comp Biochem Physiol A Comp Physiol. 1975 Aug 1;51(4):823–826. doi: 10.1016/0300-9629(75)90061-4. [DOI] [PubMed] [Google Scholar]
  13. Lakshmana M. K., Raju T. R. Endosulfan induces small but significant changes in the levels of noradrenaline, dopamine and serotonin in the developing rat brain and deficits in the operant learning performance. Toxicology. 1994 Jul 1;91(2):139–150. doi: 10.1016/0300-483x(94)90140-6. [DOI] [PubMed] [Google Scholar]
  14. Leveteau J., Andriason I., Mac Leod P. Interbulbar reciprocal inhibition in frog olfaction. Behav Brain Res. 1993 Mar 31;54(1):103–106. doi: 10.1016/0166-4328(93)90052-r. [DOI] [PubMed] [Google Scholar]
  15. Luchini L. C., Peres T. B., de Andréa M. M. Monitoring of pesticide residues in a cotton crop soil. J Environ Sci Health B. 2000 Jan;35(1):51–59. doi: 10.1080/03601230009373253. [DOI] [PubMed] [Google Scholar]
  16. Park D., Propper C. R. Repellent function of male pheromones in the red-spotted newt. J Exp Zool. 2001 May 1;289(6):404–408. doi: 10.1002/jez.1021. [DOI] [PubMed] [Google Scholar]
  17. Pickford D. B., Morris I. D. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro. Environ Health Perspect. 1999 Apr;107(4):285–292. doi: 10.1289/ehp.99107285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Propper C. R., Moore F. L. Effects of courtship on brain gonadotropin hormone-releasing hormone and plasma steroid concentrations in a female amphibian (Taricha granulosa). Gen Comp Endocrinol. 1991 Feb;81(2):304–312. doi: 10.1016/0016-6480(91)90015-x. [DOI] [PubMed] [Google Scholar]
  19. Sinha N., Lal B., Singh T. P. Effect of endosulfan on thyroid physiology in the freshwater catfish, Clarias batrachus. Toxicology. 1991 Apr 8;67(2):187–197. doi: 10.1016/0300-483x(91)90142-n. [DOI] [PubMed] [Google Scholar]
  20. Vonier P. M., Crain D. A., McLachlan J. A., Guillette L. J., Jr, Arnold S. F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996 Dec;104(12):1318–1322. doi: 10.1289/ehp.961041318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES