Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):877–880. doi: 10.1289/ehp.01109877

The risk linked to ionizing radiation: an alternative epidemiologic approach.

C de Brouwer 1, R Lagasse 1
PMCID: PMC1240436  PMID: 11673115

Abstract

Radioprotection norms have been based on risk models that have evolved over time. These models show relationships between exposure and observed effects. There is a high level of uncertainty regarding lower doses. Recommendations have been based on the conservative hypothesis of a linear relationship without threshold value. This relationship is still debated, and the diverse observations do not allow any definitive conclusion. Available data are contradictory, and various interpretations can be made. Here we review an alternative approach for defining causation and reconciling apparently contradictory conclusions. This alternative epidemiologic approach is based on causal groups: Each component of a causal group is necessary but not sufficient for causality. Many groups may be involved in causality. Thus, ionizing radiation may be a component of one or several causal groups. This formalization reconciles heterogeneous observations but implies searching for the interactions between components, mostly between critical components of a causal profile, and, for instance, the reasons why specific human groups would not show any effect despite exposure, when an effect would be expected.

Full Text

The Full Text of this article is available as a PDF (52.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore J. P., Krewski D., Zielinski J. M., Jiang H., Semenciw R., Band P. R. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 1998 Sep 15;148(6):564–574. doi: 10.1093/oxfordjournals.aje.a009682. [DOI] [PubMed] [Google Scholar]
  2. Boice J. D., Jr, Miller R. W. Childhood and adult cancer after intrauterine exposure to ionizing radiation. Teratology. 1999 Apr;59(4):227–233. doi: 10.1002/(SICI)1096-9926(199904)59:4<227::AID-TERA7>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  3. Bryant P. E. DNA damage, repair and chromosomal damage. Int J Radiat Biol. 1997 Jun;71(6):675–680. doi: 10.1080/095530097143680. [DOI] [PubMed] [Google Scholar]
  4. Cohen B. L. Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 1995 Feb;68(2):157–174. doi: 10.1097/00004032-199502000-00002. [DOI] [PubMed] [Google Scholar]
  5. De Brouwer C., Lagasse R. La Directive européenne 96/29/Euratom vue à travers l'histoire de la radioprotection. Rev Med Brux. 2001 Feb;22(1):33–41. [PubMed] [Google Scholar]
  6. Doll R., Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997 Feb;70:130–139. doi: 10.1259/bjr.70.830.9135438. [DOI] [PubMed] [Google Scholar]
  7. Evans H. J. Gardner report. Leukaemia and radiation. Nature. 1990 May 3;345(6270):16–17. doi: 10.1038/345016a0. [DOI] [PubMed] [Google Scholar]
  8. Field R. W., Smith B. J., Lynch C. F. Cohen's paradox. Health Phys. 1999 Sep;77(3):328–329. doi: 10.1097/00004032-199909000-00013. [DOI] [PubMed] [Google Scholar]
  9. Gardner M. J., Snee M. P., Hall A. J., Powell C. A., Downes S., Terrell J. D. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ. 1990 Feb 17;300(6722):423–429. doi: 10.1136/bmj.300.6722.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldsmith J. R. The residential radon-lung cancer association in U.S. counties: a commentary. Health Phys. 1999 May;76(5):553–557. doi: 10.1097/00004032-199905000-00014. [DOI] [PubMed] [Google Scholar]
  11. Greenland S., Robins J. Invited commentary: ecologic studies--biases, misconceptions, and counterexamples. Am J Epidemiol. 1994 Apr 15;139(8):747–760. doi: 10.1093/oxfordjournals.aje.a117069. [DOI] [PubMed] [Google Scholar]
  12. Harris C. C. p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and cancer risk assessment. Environ Health Perspect. 1996 May;104 (Suppl 3):435–439. doi: 10.1289/ehp.96104s3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joiner M. C., Lambin P., Malaise E. P., Robson T., Arrand J. E., Skov K. A., Marples B. Hypersensitivity to very-low single radiation doses: its relationship to the adaptive response and induced radioresistance. Mutat Res. 1996 Nov 4;358(2):171–183. doi: 10.1016/s0027-5107(96)00118-2. [DOI] [PubMed] [Google Scholar]
  14. Kathren R. L. Pathway to a paradigm: the linear nonthreshold dose-response model in historical context. The American Academy of Health Physics 1995 Radiology Centennial Hartman Oration. Health Phys. 1996 May;70(5):621–635. doi: 10.1097/00004032-199605000-00002. [DOI] [PubMed] [Google Scholar]
  15. Kennedy A. R., Little J. B. Evidence that a second event in X-ray-induced oncogenic transformation in vitro occurs during cellular proliferation. Radiat Res. 1984 Aug;99(2):228–248. [PubMed] [Google Scholar]
  16. Land C. E. Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. JAMA. 1995 Aug 2;274(5):402–407. [PubMed] [Google Scholar]
  17. Lavin M. F., Bennett I., Ramsay J., Gardiner R. A., Seymour G. J., Farrell A., Walsh M. Identification of a potentially radiosensitive subgroup among patients with breast cancer. J Natl Cancer Inst. 1994 Nov 2;86(21):1627–1634. doi: 10.1093/jnci/86.21.1627. [DOI] [PubMed] [Google Scholar]
  18. Little J. B. Radiation-induced genomic instability. Int J Radiat Biol. 1998 Dec;74(6):663–671. doi: 10.1080/095530098140925. [DOI] [PubMed] [Google Scholar]
  19. Little M. P., Muirhead C. R. Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors. Int J Radiat Biol. 1996 Jul;70(1):83–94. doi: 10.1080/095530096145364. [DOI] [PubMed] [Google Scholar]
  20. Loeb L. A. Transient expression of a mutator phenotype in cancer cells. Science. 1997 Sep 5;277(5331):1449–1450. doi: 10.1126/science.277.5331.1449. [DOI] [PubMed] [Google Scholar]
  21. Lubin J. H., Boice J. D., Jr, Edling C., Hornung R. W., Howe G. R., Kunz E., Kusiak R. A., Morrison H. I., Radford E. P., Samet J. M. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst. 1995 Jun 7;87(11):817–827. doi: 10.1093/jnci/87.11.817. [DOI] [PubMed] [Google Scholar]
  22. Lubin J. H., Boice J. D., Jr Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst. 1997 Jan 1;89(1):49–57. doi: 10.1093/jnci/89.1.49. [DOI] [PubMed] [Google Scholar]
  23. Lubin J. H. Response to Cohen's comments on the Lubin rejoinder. Health Phys. 1999 Sep;77(3):330–332. [PubMed] [Google Scholar]
  24. MACMAHON B. Prenatal x-ray exposure and childhood cancer. J Natl Cancer Inst. 1962 May;28:1173–1191. [PubMed] [Google Scholar]
  25. MacMahon B. Some recent issues in low-exposure radiation epidemiology. Environ Health Perspect. 1989 May;81:131–135. doi: 10.1289/ehp.8981131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacMahon B. Susceptibility to radiation-induced leukemia? N Engl J Med. 1972 Jul 20;287(3):144–145. doi: 10.1056/NEJM197207202870309. [DOI] [PubMed] [Google Scholar]
  27. Marples B., Lambin P., Skov K. A., Joiner M. C. Low dose hyper-radiosensitivity and increased radioresistance in mammalian cells. Int J Radiat Biol. 1997 Jun;71(6):721–735. doi: 10.1080/095530097143725. [DOI] [PubMed] [Google Scholar]
  28. Miller A. B., Howe G. R., Sherman G. J., Lindsay J. P., Yaffe M. J., Dinner P. J., Risch H. A., Preston D. L. Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Engl J Med. 1989 Nov 9;321(19):1285–1289. doi: 10.1056/NEJM198911093211902. [DOI] [PubMed] [Google Scholar]
  29. Mole R. H. Ionizing radiation as a carcinogen: practical questions and academic pursuits The Silvanus Thompson Memorial Lecture delivered at The British Institute of Radiology on April 18, 1974. Br J Radiol. 1975 Mar;48(567):157–169. doi: 10.1259/0007-1285-48-567-157. [DOI] [PubMed] [Google Scholar]
  30. Mossman K. L. The linear no-threshold debate: where do we go from here? Med Phys. 1998 Mar;25(3):279–300. doi: 10.1118/1.598208. [DOI] [PubMed] [Google Scholar]
  31. Mothersill C., Crean M., Lyons M., McSweeney J., Mooney R., O'Reilly J., Seymour C. B. Expression of delayed toxicity and lethal mutations in the progeny of human cells surviving exposure to radiation and other environmental mutagens. Int J Radiat Biol. 1998 Dec;74(6):673–680. doi: 10.1080/095530098140934. [DOI] [PubMed] [Google Scholar]
  32. Mothersill C., Seymour C. Lethal mutations and genomic instability. Int J Radiat Biol. 1997 Jun;71(6):751–758. doi: 10.1080/095530097143743. [DOI] [PubMed] [Google Scholar]
  33. Nussbaum R. H. The linear no-threshold dose-effect relation: is it relevant to radiation protection regulation? Med Phys. 1998 Mar;25(3):291–300. doi: 10.1118/1.598210. [DOI] [PubMed] [Google Scholar]
  34. Parker L., Craft A. W., Smith J., Dickinson H., Wakeford R., Binks K., McElvenny D., Scott L., Slovak A. Geographical distribution of preconceptional radiation doses to fathers employed at the Sellafield nuclear installation, West Cumbria. BMJ. 1993 Oct 16;307(6910):966–971. doi: 10.1136/bmj.307.6910.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Prise K. M., Belyakov O. V., Folkard M., Michael B. D. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol. 1998 Dec;74(6):793–798. doi: 10.1080/095530098141087. [DOI] [PubMed] [Google Scholar]
  36. Richardson D. B., Wing S. Radiation and mortality of workers at Oak Ridge National Laboratory: positive associations for doses received at older ages. Environ Health Perspect. 1999 Aug;107(8):649–656. doi: 10.1289/ehp.99107649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rojas-Burke J. Oak Ridge cancer findings hotly disputed. J Nucl Med. 1991 Jul;32(7):11N-13N, 26N. [PubMed] [Google Scholar]
  38. Rothman K. J. Methodologic frontiers in environmental epidemiology. Environ Health Perspect. 1993 Dec;101 (Suppl 4):19–21. doi: 10.1289/ehp.93101s419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. STEWART A., WEBB J., HEWITT D. A survey of childhood malignancies. Br Med J. 1958 Jun 28;1(5086):1495–1508. doi: 10.1136/bmj.1.5086.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Samet J. M., Eradze G. R. Radon and lung cancer risk: taking stock at the millenium. Environ Health Perspect. 2000 Aug;108 (Suppl 4):635–641. doi: 10.1289/ehp.00108s4635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scott D., Spreadborough A., Levine E., Roberts S. A. Genetic predisposition in breast cancer. Lancet. 1994 Nov 19;344(8934):1444–1444. doi: 10.1016/s0140-6736(94)90615-7. [DOI] [PubMed] [Google Scholar]
  42. Sinclair W. K. The linear no-threshold response: why not linearity? Med Phys. 1998 Mar;25(3):285–300. doi: 10.1118/1.598209. [DOI] [PubMed] [Google Scholar]
  43. Sperling K., Pelz J., Wegner R. D., Dörries A., Grüters A., Mikkelsen M. Significant increase in trisomy 21 in Berlin nine months after the Chernobyl reactor accident: temporal correlation or causal relation? BMJ. 1994 Jul 16;309(6948):158–162. doi: 10.1136/bmj.309.6948.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Srivastava S., Zou Z. Q., Pirollo K., Blattner W., Chang E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990 Dec 20;348(6303):747–749. doi: 10.1038/348747a0. [DOI] [PubMed] [Google Scholar]
  45. Stewart A. A-bomb data: detection of bias in the Life Span Study cohort. Environ Health Perspect. 1997 Dec;105 (Suppl 6):1519–1521. doi: 10.1289/ehp.97105s61519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stewart A. The role of epidemiology in the detection of harmful effects of radiation. Environ Health Perspect. 2000 Feb;108(2):93–96. doi: 10.1289/ehp.0010893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thompson D. E., Mabuchi K., Ron E., Soda M., Tokunaga M., Ochikubo S., Sugimoto S., Ikeda T., Terasaki M., Izumi S. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987. Radiat Res. 1994 Feb;137(2 Suppl):S17–S67. [PubMed] [Google Scholar]
  48. Ullrich R. L., Ponnaiya B. Radiation-induced instability and its relation to radiation carcinogenesis. Int J Radiat Biol. 1998 Dec;74(6):747–754. doi: 10.1080/095530098141023. [DOI] [PubMed] [Google Scholar]
  49. Wakeford R. The risk of childhood cancer from intrauterine and preconceptional exposure to ionizing radiation. Environ Health Perspect. 1995 Nov;103(11):1018–1025. doi: 10.1289/ehp.951031018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wiencke J. K., Afzal V., Olivieri G., Wolff S. Evidence that the [3H]thymidine-induced adaptive response of human lymphocytes to subsequent doses of X-rays involves the induction of a chromosomal repair mechanism. Mutagenesis. 1986 Sep;1(5):375–380. doi: 10.1093/mutage/1.5.375. [DOI] [PubMed] [Google Scholar]
  51. Wing S., Shy C. M., Wood J. L., Wolf S., Cragle D. L., Frome E. L. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984. JAMA. 1991 Mar 20;265(11):1397–1402. [PubMed] [Google Scholar]
  52. Wolff S., Afzal V., Wiencke J. K., Olivieri G., Michaeli A. Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Jan;53(1):39–47. doi: 10.1080/09553008814550401. [DOI] [PubMed] [Google Scholar]
  53. Wolff S. The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect. 1998 Feb;106 (Suppl 1):277–283. doi: 10.1289/ehp.98106s1277. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES