Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):903–908. doi: 10.1289/ehp.01109903

Brominated flame retardants: a novel class of developmental neurotoxicants in our environment?

P Eriksson 1, E Jakobsson 1, A Fredriksson 1
PMCID: PMC1240439  PMID: 11673118

Abstract

Brominated flame retardants are a novel group of global environmental contaminants. Within this group the polybrominated diphenyl ethers (PBDE) constitute one class of many that are found in electrical appliances, building materials, and textiles. PBDEs are persistent compounds that appear to have an environmental dispersion similar to that of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT). Levels of PBDEs are increasing in mother's milk while other organohalogens have decreased in concentration. We studied for developmental neurotoxic effects two polybrominated diphenyl ethers, 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) and 2,2',4,4',5-pentabromodiphenyl ether (PBDE 99)--congeners that dominate in environmental and human samples--together with another frequently used brominated flame retardant, tetrabromo-bis-phenol-A (TBBPA). The compounds were given to 10-day-old NMRI male mice, as follows: PBDE 47, 0.7 mg (1.4 micromol), 10.5 mg (21.1 micromol)/kg body weight (bw); PBDE 99, 0.8 mg (1.4 micromol), 12.0 mg (21.1 micromol)/kg bw; TBBPA, 0.75 mg (1.4 micromol), 11.5 mg (21.1 micromol)/kg bw. Mice serving as controls received 10 mL/kg bw of the 20% fat emulsion vehicle in the same manner. The present study has shown that neonatal exposure to PBDE 99 and PBDE 47 can cause permanent aberrations in spontaneous behavior, evident in 2- and 4-month-old animals. This effect together with the habituation capability was more pronounced with increasing age, and the changes were dose-response related. Furthermore, neonatal exposure to PBDE 99 also affected learning and memory functions in adult animals. These are developmental defects that have been detected previously in connection with PCBs.

Full Text

The Full Text of this article is available as a PDF (82.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlbom J., Fredriksson A., Eriksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res. 1995 Apr 17;677(1):13–19. doi: 10.1016/0006-8993(95)00024-k. [DOI] [PubMed] [Google Scholar]
  2. Archer T., Fredriksson A., Lewander T., Söderberg U. Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol. 1987;28(3):242–249. doi: 10.1111/j.1467-9450.1987.tb00761.x. [DOI] [PubMed] [Google Scholar]
  3. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  4. Campbell B. A., Lytle L. D., Fibiger H. C. Ontogeny of adrenergic arousal and cholinergic inhibitory mechanisms in the rat. Science. 1969 Oct 31;166(3905):635–637. doi: 10.1126/science.166.3905.635. [DOI] [PubMed] [Google Scholar]
  5. Coyle J. T., Yamamura H. I. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 1976 Dec 24;118(3):429–440. doi: 10.1016/0006-8993(76)90310-3. [DOI] [PubMed] [Google Scholar]
  6. Drachman D. A. Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology. 1977 Aug;27(8):783–790. doi: 10.1212/wnl.27.8.783. [DOI] [PubMed] [Google Scholar]
  7. Eriksson P., Ahlbom J., Fredriksson A. Exposure to DDT during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res. 1992 Jun 12;582(2):277–281. doi: 10.1016/0006-8993(92)90144-x. [DOI] [PubMed] [Google Scholar]
  8. Eriksson P., Ankarberg E., Fredriksson A. Exposure to nicotine during a defined period in neonatal life induces permanent changes in brain nicotinic receptors and in behaviour of adult mice. Brain Res. 2000 Jan 17;853(1):41–48. doi: 10.1016/s0006-8993(99)02231-3. [DOI] [PubMed] [Google Scholar]
  9. Eriksson P., Lundkvist U., Fredriksson A. Neonatal exposure to 3,3',4,4'-tetrachlorobiphenyl: changes in spontaneous behaviour and cholinergic muscarinic receptors in the adult mouse. Toxicology. 1991;69(1):27–34. doi: 10.1016/0300-483x(91)90150-y. [DOI] [PubMed] [Google Scholar]
  10. Eriksson P., Talts U. Neonatal exposure to neurotoxic pesticides increases adult susceptibility: a review of current findings. Neurotoxicology. 2000 Feb-Apr;21(1-2):37–47. [PubMed] [Google Scholar]
  11. Fein G. G., Jacobson J. L., Jacobson S. W., Schwartz P. M., Dowler J. K. Prenatal exposure to polychlorinated biphenyls: effects on birth size and gestational age. J Pediatr. 1984 Aug;105(2):315–320. doi: 10.1016/s0022-3476(84)80139-0. [DOI] [PubMed] [Google Scholar]
  12. Fiedler E. P., Marks M. J., Collins A. C. Postnatal development of cholinergic enzymes and receptors in mouse brain. J Neurochem. 1987 Sep;49(3):983–990. doi: 10.1111/j.1471-4159.1987.tb00990.x. [DOI] [PubMed] [Google Scholar]
  13. Fredriksson A., Fredriksson M., Eriksson P. Neonatal exposure to paraquat or MPTP induces permanent changes in striatum dopamine and behavior in adult mice. Toxicol Appl Pharmacol. 1993 Oct;122(2):258–264. doi: 10.1006/taap.1993.1194. [DOI] [PubMed] [Google Scholar]
  14. Gallenberg L. A., Vodicnik M. J. Transfer of persistent chemicals in milk. Drug Metab Rev. 1989;21(2):277–317. doi: 10.3109/03602538909029943. [DOI] [PubMed] [Google Scholar]
  15. Hodges H., Allen Y., Sinden J., Lantos P. L., Gray J. A. Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system--II. Cholinergic drugs as probes to investigate lesion-induced deficits and transplant-induced functional recovery. Neuroscience. 1991;45(3):609–623. doi: 10.1016/0306-4522(91)90274-r. [DOI] [PubMed] [Google Scholar]
  16. Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr. 1990 Jan;116(1):38–45. doi: 10.1016/s0022-3476(05)81642-7. [DOI] [PubMed] [Google Scholar]
  17. Jacobson J. L., Jacobson S. W. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996 Sep 12;335(11):783–789. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
  18. James J. R., Nordberg A. Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: emphasis on Alzheimer's disease and Parkinson's disease. Behav Genet. 1995 Mar;25(2):149–159. doi: 10.1007/BF02196924. [DOI] [PubMed] [Google Scholar]
  19. Meironyté D., Norén K., Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972-1997. J Toxicol Environ Health A. 1999 Nov 26;58(6):329–341. doi: 10.1080/009841099157197. [DOI] [PubMed] [Google Scholar]
  20. Morris R. G., Garrud P., Rawlins J. N., O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982 Jun 24;297(5868):681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
  21. Nordberg A. Neuronal nicotinic receptors and their implications in ageing and neurodegenerative disorders in mammals. J Reprod Fertil Suppl. 1993;46:145–154. [PubMed] [Google Scholar]
  22. Norén K., Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere. 2000 May-Jun;40(9-11):1111–1123. doi: 10.1016/s0045-6535(99)00360-4. [DOI] [PubMed] [Google Scholar]
  23. Rice D. C., Hayward S. Effects of postnatal exposure to a PCB mixture in monkeys on nonspatial discrimination reversal and delayed alternation performance. Neurotoxicology. 1997;18(2):479–494. [PubMed] [Google Scholar]
  24. Rogan W. J., Gladen B. C., Hung K. L., Koong S. L., Shih L. Y., Taylor J. S., Wu Y. C., Yang D., Ragan N. B., Hsu C. C. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 1988 Jul 15;241(4863):334–336. doi: 10.1126/science.3133768. [DOI] [PubMed] [Google Scholar]
  25. Seegal R. F. Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Crit Rev Toxicol. 1996 Nov;26(6):709–737. doi: 10.3109/10408449609037481. [DOI] [PubMed] [Google Scholar]
  26. Sjödin A., Hagmar L., Klasson-Wehler E., Kronholm-Diab K., Jakobsson E., Bergman A. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 1999 Aug;107(8):643–648. doi: 10.1289/ehp.107-1566483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Talts U., Fredriksson A., Eriksson P. Changes in behavior and muscarinic receptor density after neonatal and adult exposure to bioallethrin. Neurobiol Aging. 1998 Nov-Dec;19(6):545–552. doi: 10.1016/s0197-4580(98)00093-1. [DOI] [PubMed] [Google Scholar]
  28. Talts U., Talts J. F., Eriksson P. Differential expression of muscarinic subtype mRNAs after exposure to neurotoxic pesticides. Neurobiol Aging. 1998 Nov-Dec;19(6):553–559. doi: 10.1016/s0197-4580(98)00095-5. [DOI] [PubMed] [Google Scholar]
  29. Tilson H. A., Jacobson J. L., Rogan W. J. Polychlorinated biphenyls and the developing nervous system: cross-species comparisons. Neurotoxicol Teratol. 1990 May-Jun;12(3):239–248. doi: 10.1016/0892-0362(90)90095-t. [DOI] [PubMed] [Google Scholar]
  30. de Boer J., Wester P. G., Klamer H. J., Lewis W. E., Boon J. P. Do flame retardants threaten ocean life? Nature. 1998 Jul 2;394(6688):28–29. doi: 10.1038/27798. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES