Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):909–913. doi: 10.1289/ehp.01109909

Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells.

D Qiao 1, F J Seidler 1, T A Slotkin 1
PMCID: PMC1240440  PMID: 11673119

Abstract

The widely used organophosphate pesticide chlorpyrifos is a suspected neuroteratogen. In the current study, we compared the effects of chlorpyrifos and its major metabolites in two in vitro models, neuronotypic PC12 cells and gliotypic C6 cells. Chlorpyrifos inhibited DNA synthesis in both cell lines but had a greater effect on gliotypic cells. Chlorpyrifos oxon, the active metabolite that inhibits cholinesterase, also decreased DNA synthesis in PC12 and C6 cells with a preferential effect on the latter. Trichloropyridinol, the major catabolic product of chlorpyrifos, had a much smaller, but nevertheless statistically significant, effect that was equivalent in both cell lines. Diazinon, another organophosphate pesticide, also inhibited DNA synthesis with preference toward C6 cells, but was less effective than was chlorpyrifos. Physostigmine, a non-organophosphate cholinesterase inhibitor, was less effective than either chlorpyrifos or diazinon, but still caused significant inhibition of DNA synthesis in C6 cells. We also found that the addition of sera protected the cells from the adverse effects of chlorpyrifos and that the effect could be reproduced by addition of albumin. These results indicate that chlorpyrifos and other organophosphates such as diazinon have immediate, direct effects on neural cell replication, preferentially for gliotypic cells. In light of the protective effect of serum proteins, the fact that the fetus and newborn possess lower concentrations of these proteins suggests that greater neurotoxic effects may occur at blood levels of chlorpyrifos that are nontoxic to adults.

Full Text

The Full Text of this article is available as a PDF (64.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aschner M., Allen J. W., Kimelberg H. K., LoPachin R. M., Streit W. J. Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol. 1999;39:151–173. doi: 10.1146/annurev.pharmtox.39.1.151. [DOI] [PubMed] [Google Scholar]
  2. Atterberry T. T., Burnett W. T., Chambers J. E. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol. 1997 Dec;147(2):411–418. doi: 10.1006/taap.1997.8303. [DOI] [PubMed] [Google Scholar]
  3. Bagchi D., Bagchi M., Hassoun E. A., Stohs S. J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995 Dec 15;104(1-3):129–140. doi: 10.1016/0300-483x(95)03156-a. [DOI] [PubMed] [Google Scholar]
  4. Bagchi D., Bhattacharya G., Stohs S. J. In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides. Toxicology. 1996 Aug 1;112(1):57–68. doi: 10.1016/0300-483x(96)03350-1. [DOI] [PubMed] [Google Scholar]
  5. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  6. Bell J. M., Whitmore W. L., Slotkin T. A. Effects of alpha-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase, on nucleic acids and proteins in developing rat brain: critical perinatal periods for regional selectivity. Neuroscience. 1986 Feb;17(2):399–407. doi: 10.1016/0306-4522(86)90255-1. [DOI] [PubMed] [Google Scholar]
  7. Berse B., Blusztajn J. K. Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 1997 Jun 30;410(2-3):175–179. doi: 10.1016/s0014-5793(97)00568-1. [DOI] [PubMed] [Google Scholar]
  8. Braeckman R. A., Audenaert F., Willems J. L., Belpaire F. M., Bogaert M. G. Toxicokinetics of methyl parathion and parathion in the dog after intravenous and oral administration. Arch Toxicol. 1983 Sep;54(1):71–82. doi: 10.1007/BF00277817. [DOI] [PubMed] [Google Scholar]
  9. Buznikov G. A., Nikitina L. A., Bezuglov V. V., Lauder J. M., Padilla S., Slotkin T. A. An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ Health Perspect. 2001 Jul;109(7):651–661. doi: 10.1289/ehp.01109651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
  11. Chanda S. M., Mortensen S. R., Moser V. C., Padilla S. Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fundam Appl Toxicol. 1997 Aug;38(2):148–157. [PubMed] [Google Scholar]
  12. Cosenza M. E., Bidanset J. Effects of chlorpyrifos on neuronal development in rat embryo midbrain micromass cultures. Vet Hum Toxicol. 1995 Apr;37(2):118–121. [PubMed] [Google Scholar]
  13. Crumpton T. L., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res. 2000 Feb 28;857(1-2):87–98. doi: 10.1016/s0006-8993(99)02357-4. [DOI] [PubMed] [Google Scholar]
  14. Crumpton T. L., Seidler F. J., Slotkin T. A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res Dev Brain Res. 2000 Jun 30;121(2):189–195. doi: 10.1016/s0165-3806(00)00045-6. [DOI] [PubMed] [Google Scholar]
  15. Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
  16. Dam K., Seidler F. J., Slotkin T. A. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Brain Res Dev Brain Res. 2000 Jun 30;121(2):179–187. doi: 10.1016/s0165-3806(00)00044-4. [DOI] [PubMed] [Google Scholar]
  17. Dam K., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res. 1998 Jun 15;108(1-2):39–45. doi: 10.1016/s0165-3806(98)00028-5. [DOI] [PubMed] [Google Scholar]
  18. Das K. P., Barone S., Jr Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217–230. doi: 10.1006/taap.1999.8767. [DOI] [PubMed] [Google Scholar]
  19. Ehrich M., Correll L., Veronesi B. Acetylcholinesterase and neuropathy target esterase inhibitions in neuroblastoma cells to distinguish organophosphorus compounds causing acute and delayed neurotoxicity. Fundam Appl Toxicol. 1997 Jul;38(1):55–63. doi: 10.1006/faat.1997.2330. [DOI] [PubMed] [Google Scholar]
  20. Garcia S. J., Seidler F. J., Crumpton T. L., Slotkin T. A. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res. 2001 Feb 9;891(1-2):54–68. doi: 10.1016/s0006-8993(00)03189-9. [DOI] [PubMed] [Google Scholar]
  21. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Guerri C., Renau-Piqueras J. Alcohol, astroglia, and brain development. Mol Neurobiol. 1997 Aug;15(1):65–81. doi: 10.1007/BF02740616. [DOI] [PubMed] [Google Scholar]
  23. Hamm J. T., Wilson B. W., Hinton D. E. Organophosphate-induced acetylcholinesterase inhibition and embryonic retinal cell necrosis in vivo in the teleost (Oryzias latipes). Neurotoxicology. 1998 Dec;19(6):853–869. [PubMed] [Google Scholar]
  24. Hamm JT, Hinton DE. The role of development and duration of exposure to the embryotoxicity of diazinon. Aquat Toxicol. 2000 Apr 1;48(4):403–418. doi: 10.1016/s0166-445x(99)00065-x. [DOI] [PubMed] [Google Scholar]
  25. Hanley T. R., Jr, Carney E. W., Johnson E. M. Developmental toxicity studies in rats and rabbits with 3,5,6-trichloro-2-pyridinol, the major metabolite of chlorpyrifos. Toxicol Sci. 2000 Jan;53(1):100–108. doi: 10.1093/toxsci/53.1.100. [DOI] [PubMed] [Google Scholar]
  26. Huff R. A., Abou-Donia M. B. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology. 1995 Summer;16(2):281–290. [PubMed] [Google Scholar]
  27. Huff R. A., Corcoran J. J., Anderson J. K., Abou-Donia M. B. Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther. 1994 Apr;269(1):329–335. [PubMed] [Google Scholar]
  28. Hunter D. L., Lassiter T. L., Padilla S. Gestational exposure to chlorpyrifos: comparative distribution of trichloropyridinol in the fetus and dam. Toxicol Appl Pharmacol. 1999 Jul 1;158(1):16–23. doi: 10.1006/taap.1999.8689. [DOI] [PubMed] [Google Scholar]
  29. Karanth S., Pope C. Carboxylesterase and A-esterase activities during maturation and aging: relationship to the toxicity of chlorpyrifos and parathion in rats. Toxicol Sci. 2000 Dec;58(2):282–289. doi: 10.1093/toxsci/58.2.282. [DOI] [PubMed] [Google Scholar]
  30. Lassiter T. L., Padilla S., Mortensen S. R., Chanda S. M., Moser V. C., Barone S., Jr Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol Appl Pharmacol. 1998 Sep;152(1):56–65. doi: 10.1006/taap.1998.8514. [DOI] [PubMed] [Google Scholar]
  31. Li W., Casida J. E. Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol Lett. 1998 Sep 15;98(3):139–146. doi: 10.1016/s0378-4274(98)00116-7. [DOI] [PubMed] [Google Scholar]
  32. Mack A., Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. Prog Neurobiol. 2000 Apr;60(6):607–628. doi: 10.1016/s0301-0082(99)00047-7. [DOI] [PubMed] [Google Scholar]
  33. Monnet-Tschudi F., Zurich M. G., Schilter B., Costa L. G., Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol. 2000 Jun 15;165(3):175–183. doi: 10.1006/taap.2000.8934. [DOI] [PubMed] [Google Scholar]
  34. Morale A., Coniglio L., Angelini C., Cimoli G., Bolla A., Alleteo D., Russo P., Falugi C. Biological effects of a neurotoxic pesticide at low concentrations on sea urchin early development. A terathogenic assay. Chemosphere. 1998 Dec;37(14-15):3001–3010. doi: 10.1016/s0045-6535(98)00341-5. [DOI] [PubMed] [Google Scholar]
  35. Morita K., Ishimura K., Tsuruo Y., Wong D. L. Dexamethasone enhances serum deprivation-induced necrotic death of rat C6 glioma cells through activation of glucocorticoid receptors. Brain Res. 1999 Jan 23;816(2):309–316. doi: 10.1016/s0006-8993(98)01093-2. [DOI] [PubMed] [Google Scholar]
  36. Moser V. C., Chanda S. M., Mortensen S. R., Padilla S. Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol Sci. 1998 Dec;46(2):211–222. doi: 10.1006/toxs.1998.2526. [DOI] [PubMed] [Google Scholar]
  37. Muscarella D. E., Keown J. F., Bloom S. E. Evaluation of the genotoxic and embryotoxic potential of chlorpyrifos and its metabolites in vivo and in vitro. Environ Mutagen. 1984;6(1):13–23. doi: 10.1002/em.2860060103. [DOI] [PubMed] [Google Scholar]
  38. Padilla S., Buzzard J., Moser V. C. Comparison of the role of esterases in the differential age-related sensitivity to chlorpyrifos and methamidophos. Neurotoxicology. 2000 Feb-Apr;21(1-2):49–56. [PubMed] [Google Scholar]
  39. Pond A. L., Coyne C. P., Chambers H. W., Chambers J. E. Identification and isolation of two rat serum proteins with A-esterase activity toward paraoxon and chlorpyrifos-oxon. Biochem Pharmacol. 1996 Jul 26;52(2):363–369. doi: 10.1016/0006-2952(96)00215-8. [DOI] [PubMed] [Google Scholar]
  40. Pope C. N., Chakraborti T. K., Chapman M. L., Farrar J. D., Arthun D. Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. Toxicology. 1991;68(1):51–61. doi: 10.1016/0300-483x(91)90061-5. [DOI] [PubMed] [Google Scholar]
  41. Pope C. N., Chakraborti T. K. Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. Toxicology. 1992;73(1):35–43. doi: 10.1016/0300-483x(92)90168-e. [DOI] [PubMed] [Google Scholar]
  42. Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
  43. Robitzki A., Döll F., Richter-Landsberg C., Layer P. G. Regulation of the rat oligodendroglia cell line OLN-93 by antisense transfection of butyrylcholinesterase. Glia. 2000 Sep;31(3):195–205. doi: 10.1002/1098-1136(200009)31:3<195::aid-glia10>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  44. Roy T. S., Andrews J. E., Seidler F. J., Slotkin T. A. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology. 1998 Aug;58(2):62–68. doi: 10.1002/(SICI)1096-9926(199808)58:2<62::AID-TERA7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  45. Slotkin T. A. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999 Feb;107 (Suppl 1):71–80. doi: 10.1289/ehp.99107s171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Song X., Seidler F. J., Saleh J. L., Zhang J., Padilla S., Slotkin T. A. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol. 1997 Jul;145(1):158–174. doi: 10.1006/taap.1997.8171. [DOI] [PubMed] [Google Scholar]
  47. Song X., Violin J. D., Seidler F. J., Slotkin T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):182–191. doi: 10.1006/taap.1998.8424. [DOI] [PubMed] [Google Scholar]
  48. Tacconi M. T. Neuronal death: is there a role for astrocytes? Neurochem Res. 1998 May;23(5):759–765. doi: 10.1023/a:1022463527474. [DOI] [PubMed] [Google Scholar]
  49. Tischler A. S., Greene L. A. Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature. 1975 Nov 27;258(5533):341–342. doi: 10.1038/258341a0. [DOI] [PubMed] [Google Scholar]
  50. Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]
  51. van den Beukel I., van Kleef R. G., Oortgiesen M. Differential effects of physostigmine and organophosphates on nicotinic receptors in neuronal cells of different species. Neurotoxicology. 1998 Dec;19(6):777–787. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES