Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):921–926. doi: 10.1289/ehp.01109921

Human physiologic factors in respiratory uptake of 1,3-butadiene.

Y S Lin 1, T J Smith 1, K T Kelsey 1, D Wypij 1
PMCID: PMC1240442  PMID: 11673121

Abstract

1,3-Butadiene (BD), a suspected human carcinogen, is used as the raw material in industries to make synthetic butyl rubber and plastics. Simulation models using experimental animal data have shown that physiologic factors play an important role in the kinetic behavior of BD. However, human data are limited. The aim of this inhalation study was to identify influential human physiologic factors in the respiratory uptake of BD. We recruited 133 healthy volunteers in Boston, Massachusetts, into this study and tested them under an approved human subjects protocol. Each subject was exposed to 2 ppm (4.42 mg/m3) BD for 20 min, followed by purified air for another 40 min. Five exhaled breath samples collected during exposure were used to determine the respiratory uptake of BD, which was defined as absorbed BD (micrograms) per kilogram of body weight during exposure. Although subjects were given identical administered doses (40 ppm x min), there was a wide range of uptake, 0.6-4.9 microg/kg. Of the studied physiologic factors, the blood:air partition coefficient and alveolar ventilation were most significant in determining the respiratory uptake (p < 0.001 for each). In addition, in the multiple regression analysis, females had significantly higher respiratory uptake of BD than males on a weight basis. For all subjects, increasing age and cigarette smoking led to significantly decreased respiratory uptake of BD. The results of this human study are consistent with previous kinetic simulations and animal studies. The findings also suggest that interindividual variation in human physiologic factors that affect the exposure-internal dose relationship should be considered while also exploring exposure-disease associations in future epidemiologic research.

Full Text

The Full Text of this article is available as a PDF (77.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin L. B., Falco J. W. Assessment of human exposure to gaseous pollutants. Risk Anal. 1989 Sep;9(3):365–375. doi: 10.1111/j.1539-6924.1989.tb01002.x. [DOI] [PubMed] [Google Scholar]
  2. Bois F. Y., Smith T. J., Gelman A., Chang H. Y., Smith A. E. Optimal design for a study of butadiene toxicokinetics in humans. Toxicol Sci. 1999 Jun;49(2):213–224. doi: 10.1093/toxsci/49.2.213. [DOI] [PubMed] [Google Scholar]
  3. Bond J. A., Recio L., Andjelkovich D. Epidemiological and mechanistic data suggest that 1,3-butadiene will not be carcinogenic to humans at exposures likely to be encountered in the environment or workplace. Carcinogenesis. 1995 Feb;16(2):165–171. doi: 10.1093/carcin/16.2.165. [DOI] [PubMed] [Google Scholar]
  4. Cole P., Delzell E., Acquavella J. Exposure to butadiene and lymphatic and hematopoietic cancer. Epidemiology. 1993 Mar;4(2):96–103. doi: 10.1097/00001648-199303000-00004. [DOI] [PubMed] [Google Scholar]
  5. Csanády G. A., Kreuzer P. E., Baur C., Filser J. G. A physiological toxicokinetic model for 1,3-butadiene in rodents and man: blood concentrations of 1,3-butadiene, its metabolically formed epoxides, and of haemoglobin adducts--relevance of glutathione depletion. Toxicology. 1996 Oct 28;113(1-3):300–305. doi: 10.1016/0300-483x(96)03461-0. [DOI] [PubMed] [Google Scholar]
  6. Dahl A. R., Bechtold W. E., Bond J. A., Henderson R. F., Mauderly J. L., Muggenburg B. A., Sun J. D., Birnbaum L. S. Species differences in the metabolism and disposition of inhaled 1,3-butadiene and isoprene. Environ Health Perspect. 1990 Jun;86:65–69. doi: 10.1289/ehp.908665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dahl A. R., Sun J. D., Birnbaum L. S., Bond J. A., Griffith W. C., Jr, Mauderly J. L., Muggenburg B. A., Sabourin P. J., Henderson R. F. Toxicokinetics of inhaled 1,3-butadiene in monkeys: comparison to toxicokinetics in rats and mice. Toxicol Appl Pharmacol. 1991 Aug;110(1):9–19. doi: 10.1016/0041-008x(91)90285-m. [DOI] [PubMed] [Google Scholar]
  8. Deurenberg P., van der Kooy K., Leenen R., Weststrate J. A., Seidell J. C. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes. 1991 Jan;15(1):17–25. [PubMed] [Google Scholar]
  9. Divine B. J., Wendt J. K., Hartman C. M. Cancer mortality among workers at a butadiene production facility. IARC Sci Publ. 1993;(127):345–362. [PubMed] [Google Scholar]
  10. Fajen J. M., Roberts D. R., Ungers L. J., Krishnan E. R. Occupational exposure of workers to 1,3-butadiene. Environ Health Perspect. 1990 Jun;86:11–18. doi: 10.1289/ehp.908611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fiserova-Bergerova V., Tichy M., Di Carlo F. J. Effects of biosolubility on pulmonary uptake and disposition of gases and vapors of lipophilic chemicals. Drug Metab Rev. 1984;15(5-6):1033–1070. doi: 10.3109/03602538409033557. [DOI] [PubMed] [Google Scholar]
  12. Gargas M. L., Andersen M. E., Clewell H. J., 3rd A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol. 1986 Dec;86(3):341–352. doi: 10.1016/0041-008x(86)90361-3. [DOI] [PubMed] [Google Scholar]
  13. Geyer H. J., Scheunert I., Rapp K., Gebefügi I., Steinberg C., Kettrup A. The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ecotoxicol Environ Saf. 1993 Aug;26(1):45–60. doi: 10.1006/eesa.1993.1040. [DOI] [PubMed] [Google Scholar]
  14. Goran M. I., Allison D. B., Poehlman E. T. Issues relating to normalization of body fat content in men and women. Int J Obes Relat Metab Disord. 1995 Sep;19(9):638–643. [PubMed] [Google Scholar]
  15. Groeseneken D., Veulemans H., Masschelein R. Respiratory uptake and elimination of ethylene glycol monoethyl ether after experimental human exposure. Br J Ind Med. 1986 Aug;43(8):544–549. doi: 10.1136/oem.43.8.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansch C., Hoekman D., Leo A., Zhang L., Li P. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol Lett. 1995 Sep;79(1-3):45–53. doi: 10.1016/0378-4274(95)03356-p. [DOI] [PubMed] [Google Scholar]
  17. Harris E. A., Seelye E. R., Whitlock R. M. Revised standards for normal resting dead-space volume and venous admixture in men and women. Clin Sci Mol Med. 1978 Jul;55(1):125–128. doi: 10.1042/cs0550125. [DOI] [PubMed] [Google Scholar]
  18. Himmelstein M. W., Acquavella J. F., Recio L., Medinsky M. A., Bond J. A. Toxicology and epidemiology of 1,3-butadiene. Crit Rev Toxicol. 1997 Jan;27(1):1–108. doi: 10.3109/10408449709037482. [DOI] [PubMed] [Google Scholar]
  19. Janosa A. D., Zbinden A. M., Feigenwinter P. Simulation of inhalational anaesthetic uptake using a lung model with charcoal. Acta Anaesthesiol Scand. 1994 Oct;38(7):672–678. doi: 10.1111/j.1399-6576.1994.tb03976.x. [DOI] [PubMed] [Google Scholar]
  20. Johanson G., Boman A. Percutaneous absorption of 2-butoxyethanol vapour in human subjects. Br J Ind Med. 1991 Nov;48(11):788–792. doi: 10.1136/oem.48.11.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johanson G., Filser J. G. PBPK model for butadiene metabolism to epoxides: quantitative species differences in metabolism. Toxicology. 1996 Oct 28;113(1-3):40–47. doi: 10.1016/0300-483x(96)03425-7. [DOI] [PubMed] [Google Scholar]
  22. Kohn M. C., Melnick R. L. Species differences in the production and clearance of 1,3-butadiene metabolites: a mechanistic model indicates predominantly physiological, not biochemical, control. Carcinogenesis. 1993 Apr;14(4):619–628. doi: 10.1093/carcin/14.4.619. [DOI] [PubMed] [Google Scholar]
  23. Medinsky M. A., Sabourin P. J., Lucier G., Birnbaum L. S., Henderson R. F. A physiological model for simulation of benzene metabolism by rats and mice. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):193–206. doi: 10.1016/0041-008x(89)90002-1. [DOI] [PubMed] [Google Scholar]
  24. Melnick R. L., Huff J. 1,3-Butadiene: toxicity and carcinogenicity in laboratory animals and in humans. Rev Environ Contam Toxicol. 1992;124:111–144. doi: 10.1007/978-1-4612-2864-6_5. [DOI] [PubMed] [Google Scholar]
  25. Melnick R. L., Shackelford C. C., Huff J. Carcinogenicity of 1,3-butadiene. Environ Health Perspect. 1993 Apr;100:227–236. doi: 10.1289/ehp.93100227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Munson E. S., Eger E. I., 2nd, Tham M. K., Embro W. J. Increase in anesthetic uptake, excretion, and blood solubility in man after eating. Anesth Analg. 1978 Mar-Apr;57(2):224–231. doi: 10.1213/00000539-197803000-00013. [DOI] [PubMed] [Google Scholar]
  27. Nihlén A., Löf A., Johanson G. Controlled ethyl tert-butyl ether (ETBE) exposure of male volunteers. I. Toxicokinetics. Toxicol Sci. 1998 Nov;46(1):1–10. doi: 10.1006/toxs.1998.2516. [DOI] [PubMed] [Google Scholar]
  28. Oldigs M., Jörres R., Magnussen H. Acute effect of passive smoking on lung function and airway responsiveness in asthmatic children. Pediatr Pulmonol. 1991;10(2):123–131. doi: 10.1002/ppul.1950100215. [DOI] [PubMed] [Google Scholar]
  29. Opdam J. J. Respiratory input in inhalation experiments. Br J Ind Med. 1989 Mar;46(3):145–156. doi: 10.1136/oem.46.3.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rego A., Roley L. In-use barrier integrity of gloves: latex and nitrile superior to vinyl. Am J Infect Control. 1999 Oct;27(5):405–410. doi: 10.1016/s0196-6553(99)70006-4. [DOI] [PubMed] [Google Scholar]
  31. Sato A., Endoh K., Kaneko T., Johanson G. A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours. Br J Ind Med. 1991 May;48(5):342–347. doi: 10.1136/oem.48.5.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stankus R. P., Menon P. K., Rando R. J., Glindmeyer H., Salvaggio J. E., Lehrer S. B. Cigarette smoke-sensitive asthma: challenge studies. J Allergy Clin Immunol. 1988 Sep;82(3 Pt 1):331–338. doi: 10.1016/0091-6749(88)90003-6. [DOI] [PubMed] [Google Scholar]
  33. Sweeney L. M., Schlosser P. M., Medinsky M. A., Bond J. A. Physiologically based pharmacokinetic modeling of 1,3-butadiene, 1,2-epoxy-3-butene, and 1,2:3,4-diepoxybutane toxicokinetics in mice and rats. Carcinogenesis. 1997 Apr;18(4):611–625. doi: 10.1093/carcin/18.4.611. [DOI] [PubMed] [Google Scholar]
  34. Ward E. M., Fajen J. M., Ruder A. M., Rinsky R. A., Halperin W. E., Fessler-Flesch C. A. Mortality study of workers in 1,3-butadiene production units identified from a chemical workers cohort. Environ Health Perspect. 1995 Jun;103(6):598–603. doi: 10.1289/ehp.95103598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yasuda N., Targ A. G., Eger E. I., 2nd Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989 Sep;69(3):370–373. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES