Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):927–935. doi: 10.1289/ehp.01109927

Specific accumulation and elimination kinetics of tris(4-chlorophenyl)methane, tris(4-chlorophenyl)methanol, and other persistent organochlorines in humans from Japan.

T B Minh 1, M Watanabe 1, S Tanabe 1, T Yamada 1, J Hata 1, S Watanabe 1
PMCID: PMC1240443  PMID: 11673122

Abstract

We examined human adipose tissue, liver, and bile from humans in Japan to understand the contamination status, specific accumulation, and elimination of two newly identified environmental contaminants, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMOH), and other persistent organochlorines such as polychlorinated biphenyls (PCBs), DDT and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB), and chlordane compounds (CHLs). TCPMe and TCPMOH concentrations in Japanese human adipose tissue were slightly higher than those reported previously, indicating widespread exposure to these compounds in humans. Elevated residues of PCBs and DDTs are found in adipose tissue and liver. Concentrations in bile strongly correlated with concentrations in adipose fat and liver, which may suggest an equilibration in adipose fat/bile and liver/bile and possible biliary excretion of persistent organochlorines in humans. Composition of the organochlorines accumulated further indicates a metabolic capacity in humans higher than that of marine mammals. We observed age-dependent accumulation for TCPMe, TCPMOH, and other organochlorines, but there were no significant gender differences. p,p'-DDE and TCPMe were estimated to have low biliary excretion rate. Elimination potential of persistent organochlorines may be related to their octanol-water partition coefficient. The relationship between excretion rate and octanol-water partition coefficient may be used to predict the biliary excretion potential of some other lipophilic organochlorines such as dioxins and dibenzofurans in humans. The presence of organochlorines in bile suggests that the hepatic excretory system plays a major role in the elimination of xenobiotics in humans. To our knowledge, this is the first study of accumulation and elimination of TCPMe and TCPMOH in humans.

Full Text

The Full Text of this article is available as a PDF (123.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott D. C., Collins G. B., Goulding R., Hoodless R. A. Organochlorine pesticide residues in human fat in the United Kingdom 1976-7. Br Med J (Clin Res Ed) 1981 Nov 28;283(6304):1425–1428. doi: 10.1136/bmj.283.6304.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abraham K., Hille A., Ende M., Helge H. Intake and fecal excretion of PCDDs, PCDFs, HCB and PCBs (138, 153, 180) in a breast-fed and a formula-fed infant. Chemosphere. 1994 Nov-Dec;29(9-11):2279–2286. doi: 10.1016/0045-6535(94)90395-6. [DOI] [PubMed] [Google Scholar]
  3. Ahlborg U. G., Lipworth L., Titus-Ernstoff L., Hsieh C. C., Hanberg A., Baron J., Trichopoulos D., Adami H. O. Organochlorine compounds in relation to breast cancer, endometrial cancer, and endometriosis: an assessment of the biological and epidemiological evidence. Crit Rev Toxicol. 1995;25(6):463–531. doi: 10.3109/10408449509017924. [DOI] [PubMed] [Google Scholar]
  4. Bjorseth A., Lunde G., Dybing E. Residues of persistent chlorinated hydrocarbons in human tissues as studied by neutron activation analysis and gas chromatography. Bull Environ Contam Toxicol. 1977 Nov;18(5):581–587. doi: 10.1007/BF01684004. [DOI] [PubMed] [Google Scholar]
  5. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dayton P. G., Israili Z. H., Henderson J. D. Elimination of drugs by passive diffusion from blood to intestinal lumen: factors influencing nonbiliary excretion by the intestinal tract. Drug Metab Rev. 1983;14(6):1193–1206. doi: 10.3109/03602538308991427. [DOI] [PubMed] [Google Scholar]
  7. Dewailly E., Mulvad G., Pedersen H. S., Ayotte P., Demers A., Weber J. P., Hansen J. C. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland. Environ Health Perspect. 1999 Oct;107(10):823–828. doi: 10.1289/ehp.99107823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrer A., Bona M. A., Castellano M., To-Figueras J., Brunet M. Organochlorine residues in human adipose tissue of the population of Zaragoza (Spain). Bull Environ Contam Toxicol. 1992 Apr;48(4):561–566. doi: 10.1007/BF00199074. [DOI] [PubMed] [Google Scholar]
  9. Focardi S., Fossi C., Leonzio C., Romei R. PCB congeners, hexachlorobenzene, and organochlorine insecticides in human fat in Italy. Bull Environ Contam Toxicol. 1986 May;36(5):644–650. doi: 10.1007/BF01623563. [DOI] [PubMed] [Google Scholar]
  10. Foster W. G., Desaulniers D., Leingartner K., Wade M. G., Poon R., Chu I. Reproductive effects of tris(4-chlorophenyl)methanol in the rat. Chemosphere. 1999 Aug;39(5):709–724. doi: 10.1016/s0045-6535(98)00500-1. [DOI] [PubMed] [Google Scholar]
  11. Gallelli G., Mangini S., Gerbino C. Organochlorine residues in human adipose and hepatic tissues from autopsy sources in northern Italy. J Toxicol Environ Health. 1995 Nov;46(3):293–300. doi: 10.1080/15287399509532036. [DOI] [PubMed] [Google Scholar]
  12. Guillette L. J., Jr, Gross T. S., Masson G. R., Matter J. M., Percival H. F., Woodward A. R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect. 1994 Aug;102(8):680–688. doi: 10.1289/ehp.94102680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirai Y., Tomokuni K. Levels of chlordane, oxychlordane, and nonachlor in human adipose tissues. Bull Environ Contam Toxicol. 1991 Aug;47(2):173–176. doi: 10.1007/BF01688636. [DOI] [PubMed] [Google Scholar]
  14. Hu K., Bunce N. J. Metabolism of polychlorinated dibenzo-p-dioxins and related dioxin-like compounds. J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):183–210. doi: 10.1080/109374099281214. [DOI] [PubMed] [Google Scholar]
  15. Kang Y. S., Matsuda M., Kawano M., Wakimoto T., Min B. Y. Organochlorine pesticides, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in human adipose tissue from western Kyungnam, Korea. Chemosphere. 1997 Nov;35(10):2107–2117. doi: 10.1016/s0045-6535(97)00289-0. [DOI] [PubMed] [Google Scholar]
  16. Kannan N., Tanabe S., Ono M., Tatsukawa R. Critical evaluation of polychlorinated biphenyl toxicity in terrestrial and marine mammals: increasing impact of non-ortho and mono-ortho coplanar polychlorinated biphenyls from land to ocean. Arch Environ Contam Toxicol. 1989 Nov;18(6):850–857. doi: 10.1007/BF01160300. [DOI] [PubMed] [Google Scholar]
  17. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  18. Lascombe I., Beffa D., Rüegg U., Tarradellas J., Wahli W. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds. Environ Health Perspect. 2000 Jul;108(7):621–629. doi: 10.1289/ehp.00108621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Loganathan B. G., Tanabe S., Hidaka Y., Kawano M., Hidaka H., Tatsukawa R. Temporal trends of persistent organochlorine residues in human adipose tissue from Japan, 1928-1985. Environ Pollut. 1993;81(1):31–39. doi: 10.1016/0269-7491(93)90025-j. [DOI] [PubMed] [Google Scholar]
  20. Matsumoto H., Murakami Y., Kuwabara K., Tanaka R., Kashimoto T. Average daily intake of pesticides and polychlorinated biphenyls in total diet samples in Osaka, Japan. Bull Environ Contam Toxicol. 1987 Jun;38(6):954–958. doi: 10.1007/BF01609079. [DOI] [PubMed] [Google Scholar]
  21. Mes J. Trends in the levels of some chlorinated hydrocarbon residues in adipose tissue of Canadians. Environ Pollut. 1990;65(3):269–278. doi: 10.1016/0269-7491(90)90088-t. [DOI] [PubMed] [Google Scholar]
  22. Minh T. B., Nakata H., Watanabe M., Tanabe S., Miyazaki N., Jefferson T. A., Prudente M., Subramanian A. Isomer-specific accumulation and toxic assessment of polychlorinated biphenyls, including coplanar congeners, in cetaceans from the North Pacific and Asian coastal waters. Arch Environ Contam Toxicol. 2000 Oct;39(3):398–410. doi: 10.1007/s002440010121. [DOI] [PubMed] [Google Scholar]
  23. Minh T. B., Watanabe M., Tanabe S., Miyazaki N., Jefferson T. A., Prudente M. S., Subramanian A., Karuppiah S. Widespread contamination by tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol in cetaceans from the North Pacific and Asian coastal waters. Environ Pollut. 2000 Dec;110(3):459–468. doi: 10.1016/s0269-7491(99)00316-4. [DOI] [PubMed] [Google Scholar]
  24. Minh T. B., Watanabe M., Tanabe S., Yamada T., Hata J., Watanabe S. Occurrence of Tris(4-chlorophenyl)methane, tris(4-chlorophenyl)methanol, and some other persistent organochlorines in Japanese human adipose tissue. Environ Health Perspect. 2000 Jul;108(7):599–603. doi: 10.1289/ehp.00108599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mussalo-Rauhamaa H. Partitioning and levels of neutral organochlorine compounds in human serum, blood cells, and adipose and liver tissue. Sci Total Environ. 1991 Apr 15;103(2-3):159–175. doi: 10.1016/0048-9697(91)90142-2. [DOI] [PubMed] [Google Scholar]
  26. Robinson P. E., Mack G. A., Remmers J., Levy R., Mohadjer L. Trends of PCB, hexachlorobenzene, and beta-benzene hexachloride levels in the adipose tissue of the U.S. population. Environ Res. 1990 Dec;53(2):175–192. doi: 10.1016/s0013-9351(05)80118-5. [DOI] [PubMed] [Google Scholar]
  27. Rozman K., Rozman T., Greim H. Stimulation of nonbiliary, intestinal excretion of hexachlorobenzene in rhesus monkeys by mineral oil. Toxicol Appl Pharmacol. 1983 Sep 15;70(2):255–261. doi: 10.1016/0041-008x(83)90101-1. [DOI] [PubMed] [Google Scholar]
  28. Tanabe S., Iwata H., Tatsukawa R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ. 1994 Sep 16;154(2-3):163–177. doi: 10.1016/0048-9697(94)90086-8. [DOI] [PubMed] [Google Scholar]
  29. To-Figueras J., Barrot C., Sala M., Otero R., Silva M., Ozalla M. D., Herrero C., Corbella J., Grimalt J., Sunyer J. Excretion of hexachlorobenzene and metabolites in feces in a highly exposed human population. Environ Health Perspect. 2000 Jul;108(7):595–598. doi: 10.1289/ehp.00108595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. To-Figueras J., Sala M., Otero R., Barrot C., Santiago-Silva M., Rodamilans M., Herrero C., Grimalt J., Sunyer J. Metabolism of hexachlorobenzene in humans: association between serum levels and urinary metabolites in a highly exposed population. Environ Health Perspect. 1997 Jan;105(1):78–83. doi: 10.1289/ehp.9710578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weistrand C., Norén K. Polychlorinated naphthalenes and other organochlorine contaminants in human adipose and liver tissue. J Toxicol Environ Health A. 1998 Feb 20;53(4):293–311. doi: 10.1080/009841098159295. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES