Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Sep;109(9):937–941. doi: 10.1289/ehp.01109937

Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide.

C K Wilkins 1, P A Clausen 1, P Wolkoff 1, S T Larsen 1, M Hammer 1, K Larsen 1, V Hansen 1, G D Nielsen 1
PMCID: PMC1240444  PMID: 11673123

Abstract

We evaluated the airway irritation of isoprene, isoprene/ozone, and isoprene/ozone/nitrogen dioxide mixtures using a mouse bioassay, from which we calculated sensory irritation, bronchial constriction, and pulmonary irritation. We observed significant sensory irritation (approximately 50% reduction of mean respiratory rate) by dynamically exposing the mice, over 30 min, to mixtures of isoprene and O3 or isoprene, O3, and NO2. The starting concentrations were approximately 4 ppm O3 and 500 ppm isoprene (+ approximately 4 ppm NO2. The reaction mixtures after approximately 30 sec contained < 0.2 ppm O3. Addition of the effects of the residual reactants and the identified stable irritant products (formaldehyde, formic acid, acetic acid, methacrolein, and methylvinyl ketone) could explain only partially the observed sensory irritation. This suggests that one or more strong airway irritants were formed. It is thus possible that oxidation reactions of common unsaturated compounds may be relevant for indoor air quality.

Full Text

The Full Text of this article is available as a PDF (56.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarie Y. Sensory irritation by airborne chemicals. CRC Crit Rev Toxicol. 1973 Nov;2(3):299–363. doi: 10.3109/10408447309082020. [DOI] [PubMed] [Google Scholar]
  2. Boylstein L. A., Anderson S. J., Thompson R. D., Alarie Y. Characterization of the effects of an airborne mixture of chemicals on the respiratory tract and smoothing polynomial spline analysis of the data. Arch Toxicol. 1995;69(9):579–589. doi: 10.1007/s002040050217. [DOI] [PubMed] [Google Scholar]
  3. Boylstein L. A., Luo J., Stock M. F., Alarie Y. An attempt to define a just detectable effect for airborne chemicals on the respiratory tract in mice. Arch Toxicol. 1996;70(9):567–578. doi: 10.1007/s002040050314. [DOI] [PubMed] [Google Scholar]
  4. Cassee F. R., Arts J. H., Groten J. P., Feron V. J. Sensory irritation to mixtures of formaldehyde, acrolein, and acetaldehyde in rats. Arch Toxicol. 1996;70(6):329–337. doi: 10.1007/s002040050282. [DOI] [PubMed] [Google Scholar]
  5. Clausen P. A., Wilkins C. K., Wolkoff P., Nielsen G. D. Chemical and biological evaluation of a reaction mixture of R-(+)-limonene/ozone: formation of strong airway irritants. Environ Int. 2001 Jun;26(7-8):511–522. doi: 10.1016/s0160-4120(01)00035-6. [DOI] [PubMed] [Google Scholar]
  6. Debrus S., Tuffery S., Matsuoka R., Galal O., Sarda P., Sauer U., Bozio A., Tanman B., Toutain A., Claustres M. Lack of evidence for connexin 43 gene mutations in human autosomal recessive lateralization defects. J Mol Cell Cardiol. 1997 May;29(5):1423–1431. doi: 10.1006/jmcc.1997.0380. [DOI] [PubMed] [Google Scholar]
  7. Fenske J. D., Paulson S. E. Human breath emissions of VOCs. J Air Waste Manag Assoc. 1999 May;49(5):594–598. doi: 10.1080/10473289.1999.10463831. [DOI] [PubMed] [Google Scholar]
  8. Gagnaire F., Zissu D., Bonnet P., De Ceaurriz J. Nasal and pulmonary toxicity of allyl glycidyl ether in mice. Toxicol Lett. 1987 Dec;39(2-3):139–145. doi: 10.1016/0378-4274(87)90226-8. [DOI] [PubMed] [Google Scholar]
  9. Höppe P., Praml G., Rabe G., Lindner J., Fruhmann G., Kessel R. Environmental ozone field study on pulmonary and subjective responses of assumed risk groups. Environ Res. 1995 Nov;71(2):109–121. doi: 10.1006/enrs.1995.1072. [DOI] [PubMed] [Google Scholar]
  10. Kohlmüller D., Kochen W. Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological reevaluation. Anal Biochem. 1993 May 1;210(2):268–276. doi: 10.1006/abio.1993.1195. [DOI] [PubMed] [Google Scholar]
  11. Kuzma J., Nemecek-Marshall M., Pollock W. H., Fall R. Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol. 1995 Feb;30(2):97–103. doi: 10.1007/BF00294190. [DOI] [PubMed] [Google Scholar]
  12. Larsen S. T., Nielsen G. D. Effects of methacrolein on the respiratory tract in mice. Toxicol Lett. 2000 Apr 3;114(1-3):197–202. doi: 10.1016/s0378-4274(99)00300-8. [DOI] [PubMed] [Google Scholar]
  13. Loreto F. Emission of isoprenoids by plants: their role in atmospheric chemistry, response to the environment, and biochemical pathways. J Environ Pathol Toxicol Oncol. 1997;16(2-3):119–124. [PubMed] [Google Scholar]
  14. Muller J., Greff G. Recherche de relations entre toxicité de molécules d'intérêt industriel et propriétés physico-chimiques: test d'irritation des voies aériennes supérieures appliqué à quatre familles chimiques. Food Chem Toxicol. 1984 Aug;22(8):661–664. doi: 10.1016/0278-6915(84)90276-x. [DOI] [PubMed] [Google Scholar]
  15. Nielsen G. D., Hougaard K. S., Larsen S. T., Hammer M., Wolkoff P., Clausen P. A., Wilkins C. K., Alarie Y. Acute airway effects of formaldehyde and ozone in BALB/c mice. Hum Exp Toxicol. 1999 Jun;18(6):400–409. doi: 10.1191/096032799678840246. [DOI] [PubMed] [Google Scholar]
  16. Nielsen G. D., Kristiansen U., Hansen L., Alarie Y. Irritation of the upper airways from mixtures of cumene and n-propanol. Mechanisms and their consequences for setting industrial exposure limits. Arch Toxicol. 1988;62(2-3):209–215. doi: 10.1007/BF00570142. [DOI] [PubMed] [Google Scholar]
  17. Pryor W. A., Bermúdez E., Cueto R., Squadrito G. L. Detection of aldehydes in bronchoalveolar lavage of rats exposed to ozone. Fundam Appl Toxicol. 1996 Nov;34(1):148–156. doi: 10.1006/faat.1996.0185. [DOI] [PubMed] [Google Scholar]
  18. Steinhagen W. H., Barrow C. S. Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice. Toxicol Appl Pharmacol. 1984 Mar 15;72(3):495–503. doi: 10.1016/0041-008x(84)90126-1. [DOI] [PubMed] [Google Scholar]
  19. Stone B. G., Besse T. J., Duane W. C., Evans C. D., DeMaster E. G. Effect of regulating cholesterol biosynthesis on breath isoprene excretion in men. Lipids. 1993 Aug;28(8):705–708. doi: 10.1007/BF02535990. [DOI] [PubMed] [Google Scholar]
  20. Vijayaraghavan R., Schaper M., Thompson R., Stock M. F., Alarie Y. Characteristic modifications of the breathing pattern of mice to evaluate the effects of airborne chemicals on the respiratory tract. Arch Toxicol. 1993;67(7):478–490. doi: 10.1007/BF01969919. [DOI] [PubMed] [Google Scholar]
  21. Vijayaraghavan R., Schaper M., Thompson R., Stock M. F., Boylstein L. A., Luo J. E., Alarie Y. Computer assisted recognition and quantitation of the effects of airborne chemicals acting at different areas of the respiratory tract in mice. Arch Toxicol. 1994;68(8):490–499. doi: 10.1007/s002040050101. [DOI] [PubMed] [Google Scholar]
  22. Weschler C. J., Shields H. C. The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. Indoor Air. 2000 Jun;10(2):92–100. doi: 10.1034/j.1600-0668.2000.010002092.x. [DOI] [PubMed] [Google Scholar]
  23. Wong K. L., Alarie Y. A method for repeated evaluation of pulmonary performance in unanesthetized, unrestrained guinea pigs and its application to detect effects of sulfuric acid mist inhalation. Toxicol Appl Pharmacol. 1982 Mar 30;63(1):72–90. doi: 10.1016/0041-008x(82)90028-x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES