Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Nov;109(11):1095–1101. doi: 10.1289/ehp.109-1240468

Bioavailability of octamethylcyclotetrasiloxane (D(4)) after exposure to silicones by inhalation and implantation.

H M Luu 1, J C Hutter 1
PMCID: PMC1240468  PMID: 11712992

Abstract

We developed a physiologically based pharmacokinetic (PBPK) model to predict the target organ doses of octamethylcyclotetrasiloxane (D(4)) after intravenous (IV), inhalation, or implantation exposures. The model used (14)C-D(4) IV disposition data in rats to estimate tissue distribution coefficients, metabolism, and excretion parameters. We validated the model by comparing the predicted blood and tissues concentrations of D(4) after inhalation to experimental results in both rats and humans. We then used the model to simulate D(4) kinetics after single and/or repeated D(4) exposures in rats and humans. The model predicted bioaccumulation of D(4) in fatty tissues (e.g., breast), especially in women. Because of its high lipid solubility (Log P(oct/water) = 5.1), D(4) persisted in fat with a half life of 11.1 days after inhalation and 18.2 days after breast implant exposure. Metabolism and excretion remained constant with repeated exposures, larger doses, and/or different routes of exposure. The accumulation of D(4) in fatty tissues should play an important role in the risk assessment of D(4) especially in women exposed daily to multiple personal care products and silicone breast implants.

Full Text

The Full Text of this article is available as a PDF (653.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Béliveau M., Krishnan K. Estimation of rat blood:air partition coefficients of volatile organic chemicals using reconstituted mixtures of blood components. Toxicol Lett. 2000 Aug 16;116(3):183–188. doi: 10.1016/s0378-4274(00)00219-8. [DOI] [PubMed] [Google Scholar]
  2. Compton R. A. Silicone manufacturing for long-term implants. J Long Term Eff Med Implants. 1997;7(1):29–54. [PubMed] [Google Scholar]
  3. Do Luu H. M., Hutter J. C. Pharmacokinetic modeling of 4,4'-methylenedianiline released from reused polyurethane dialyzer potting materials. J Biomed Mater Res. 2000;53(3):276–286. doi: 10.1002/(sici)1097-4636(2000)53:3<276::aid-jbm13>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  4. Garrido L., Pfleiderer B., Jenkins B. G., Hulka C. A., Kopans D. B. Migration and chemical modification of silicone in women with breast prostheses. Magn Reson Med. 1994 Mar;31(3):328–330. doi: 10.1002/mrm.1910310314. [DOI] [PubMed] [Google Scholar]
  5. Kala S. V., Lykissa E. D., Neely M. W., Lieberman M. W. Low molecular weight silicones are widely distributed after a single subcutaneous injection in mice. Am J Pathol. 1998 Mar;152(3):645–649. [PMC free article] [PubMed] [Google Scholar]
  6. Kent D. J., McNamara P. C., Putt A. E., Hobson J. F., Silberhorn E. M. Octamethylcyclotetrasiloxane in aquatic sediments: toxicity and risk assessment. Ecotoxicol Environ Saf. 1994 Dec;29(3):372–389. doi: 10.1016/0147-6513(94)90010-8. [DOI] [PubMed] [Google Scholar]
  7. Lieberman M. W., Lykissa E. D., Barrios R., Ou C. N., Kala G., Kala S. V. Cyclosiloxanes produce fatal liver and lung damage in mice. Environ Health Perspect. 1999 Feb;107(2):161–165. doi: 10.1289/ehp.99107161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Looney R. J., Frampton M. W., Byam J., Kenaga C., Speers D. M., Cox C., Mast R., Klykken P. C., Morrow P. E., Utell M. J. Acute respiratory exposure of human volunteers to octamethylcyclotetrasiloxane (D4): absence of immunological effects. Toxicol Sci. 1998 Aug;44(2):214–220. doi: 10.1006/toxs.1998.2484. [DOI] [PubMed] [Google Scholar]
  9. Lykissa E. D., Kala S. V., Hurley J. B., Lebovitz R. M. Release of low molecular weight silicones and platinum from silicone breast implants. Anal Chem. 1997 Dec 1;69(23):4912–4916. doi: 10.1021/ac970710w. [DOI] [PubMed] [Google Scholar]
  10. Pfleiderer B., Garrido L. Migration and accumulation of silicone in the liver of women with silicone gel-filled breast implants. Magn Reson Med. 1995 Jan;33(1):8–17. doi: 10.1002/mrm.1910330103. [DOI] [PubMed] [Google Scholar]
  11. Plotzke K. P., Crofoot S. D., Ferdinandi E. S., Beattie J. G., Reitz R. H., McNett D. A., Meeks R. G. Disposition of radioactivity in fischer 344 rats after single and multiple inhalation exposure to [(14)C]Octamethylcyclotetrasiloxane ([(14)C]D(4)). Drug Metab Dispos. 2000 Feb;28(2):192–204. [PubMed] [Google Scholar]
  12. Ramsey J. C., Andersen M. E. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):159–175. doi: 10.1016/0041-008x(84)90064-4. [DOI] [PubMed] [Google Scholar]
  13. Sun L., Alexander H., Lattarulo N., Blumenthal N. C., Ricci J. L., Chen G. Protein denaturation induced by cyclic silicone. Biomaterials. 1997 Dec;18(24):1593–1597. doi: 10.1016/s0142-9612(97)00105-1. [DOI] [PubMed] [Google Scholar]
  14. Utell M. J., Gelein R., Yu C. P., Kenaga C., Geigel E., Torres A., Chalupa D., Gibb F. R., Speers D. M., Mast R. W. Quantitative exposure of humans to an octamethylcyclotetrasiloxane (D4) vapor. Toxicol Sci. 1998 Aug;44(2):206–213. doi: 10.1006/toxs.1998.2483. [DOI] [PubMed] [Google Scholar]
  15. Varaprath S., Salyers K. L., Plotzke K. P., Nanavati S. Extraction of octamethylcyclotetrasiloxane and its metabolites from biological matrices. Anal Biochem. 1998 Feb 1;256(1):14–22. doi: 10.1006/abio.1997.2475. [DOI] [PubMed] [Google Scholar]
  16. Yu L. T., Latorre G., Marotta J., Batich C., Hardt N. S. In vitro measurement of silicone bleed from breast implants. Plast Reconstr Surg. 1996 Apr;97(4):756–764. doi: 10.1097/00006534-199604000-00011. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES