Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Nov;109(11):1153–1161. doi: 10.1289/ehp.011091153

Differential effects of two lots of aroclor 1254: congener-specific analysis and neurochemical end points.

P R Kodavanti 1, N Kannan 1, N Yamashita 1, E C Derr-Yellin 1, T R Ward 1, D E Burgin 1, H A Tilson 1, L S Birnbaum 1
PMCID: PMC1240477  PMID: 11713001

Abstract

Aroclor 1254 is a widely studied commercial polychlorinated biphenyl (PCB) mixture which, by definition, contains 54% chlorine by weight. Recent reports indicate substantial differences in the congener composition among Aroclor lots and hence their biologic effects. We designed the current study to compare the effects of two lots of Aroclor 1254 (lots 6024 and 124-191). We analyzed these two lots for PCB congeners, polychlorinated dibenzofurans (PCDFs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzodioxins (PCDDs). We used previously established techniques for analyzing intracellular Ca(2+) buffering and protein kinase C (PKC) translocation to test their biologic activity in neuronal preparations. PCB congener-specific analysis indicated that ortho and non-ortho congeners in these two lots varied in their percent contribution. Among all congeners, the percentages of non-ortho congeners (PCBs 77, 81, 126, and 169) were higher in lot 6024 (2.9% of total) than in lot 124-191 (0.02% of total). We detected no dioxins in these two lots (< 2 ppb). Although there are some differences in the congener composition, total PCNs were similar in both lots: 171 ppm in lot 6024 and 155 ppm in lot 124-191. However, total PCDFs were higher in lot 6024 (38.7 ppm) than in lot 124-191 (11.3 ppm). When we tested these two Aroclors on Ca(2+) buffering and PKC translocation in brain preparations, the effects were significantly different. Although lot 124-191 was more potent on PKC translocation than lot 6024, lot 6024 was slightly more active on Ca(2+) buffering than lot 124-191. These effects could not be attributed to the differences in the percentage of non-ortho congeners or PCDFs because they were inactive on these two parameters. The effects could not be attributed to PCNs because the levels were almost similar. The effects seen with two lots of Aroclor 1254 in neuronal cells were also not predicted based on the TCDD toxic equivalents (TEQs), although TEQs predicted the effects on ethoxyresorufin-O-deethylase (EROD) or methoxyresorufin-O-deethylase (MROD) activities. It is possible that the differential effects seen in neuronal cells could be caused by differences in the composition of ortho-congeners in these two mixtures, because PCBs with ortho-lateral substitutions can exhibit different activities on the selected neurochemical end points. Because of these differential effects with different lot numbers, the composition of Aroclor mixtures used in investigations should be disclosed.

Full Text

The Full Text of this article is available as a PDF (753.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgin D. E., Diliberto J. J., Derr-Yellin E. C., Kannan N., Kodavanti P. R., Birnbaum L. S. Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress. Environ Health Perspect. 2001 Nov;109(11):1163–1168. doi: 10.1289/ehp.011091163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  3. Carpenter D. O., Stoner C. R., Lawrence D. A. Flow cytometric measurements of neuronal death triggered by PCBs. Neurotoxicology. 1997;18(2):507–513. [PubMed] [Google Scholar]
  4. Cotman C. W., Matthews D. A. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys Acta. 1971 Dec 3;249(2):380–394. doi: 10.1016/0005-2736(71)90117-9. [DOI] [PubMed] [Google Scholar]
  5. Duinker J. C., Schulz D. E., Petrick G. Multidimensional gas chromatography with electron capture detection for the determination of toxic congeners in polychlorinated biphenyl mixtures. Anal Chem. 1988 Mar 1;60(5):478–482. doi: 10.1021/ac00156a021. [DOI] [PubMed] [Google Scholar]
  6. Fischer L. J., Seegal R. F., Ganey P. E., Pessah I. N., Kodavanti P. R. Symposium overview: toxicity of non-coplanar PCBs. Toxicol Sci. 1998 Jan;41(1):49–61. doi: 10.1006/toxs.1997.2386. [DOI] [PubMed] [Google Scholar]
  7. Fisher B. E. Most unwanted. Environ Health Perspect. 1999 Jan;107(1):A18–A23. doi: 10.1289/ehp.99107a18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallo V., Kingsbury A., Balázs R., Jørgensen O. S. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci. 1987 Jul;7(7):2203–2213. doi: 10.1523/JNEUROSCI.07-07-02203.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giesy J. P., Kannan K. Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol. 1998 Nov;28(6):511–569. doi: 10.1080/10408449891344263. [DOI] [PubMed] [Google Scholar]
  10. Kodavanti P. R., Mundy W. R., Tilson H. A., Harry G. J. Effects of selected neuroactive chemicals on calcium transporting systems in rat cerebellum and on survival of cerebellar granule cells. Fundam Appl Toxicol. 1993 Oct;21(3):308–316. doi: 10.1006/faat.1993.1103. [DOI] [PubMed] [Google Scholar]
  11. Kodavanti P. R., Shafer T. J., Ward T. R., Mundy W. R., Freudenrich T., Harry G. J., Tilson H. A. Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Res. 1994 Oct 31;662(1-2):75–82. doi: 10.1016/0006-8993(94)90797-8. [DOI] [PubMed] [Google Scholar]
  12. Kodavanti P. R., Shin D. S., Tilson H. A., Harry G. J. Comparative effects of two polychlorinated biphenyl congeners on calcium homeostasis in rat cerebellar granule cells. Toxicol Appl Pharmacol. 1993 Nov;123(1):97–106. doi: 10.1006/taap.1993.1226. [DOI] [PubMed] [Google Scholar]
  13. Kodavanti P. R., Tilson H. A. Structure-activity relationships of potentially neurotoxic PCB congeners in the rat. Neurotoxicology. 1997;18(2):425–441. [PubMed] [Google Scholar]
  14. Kodavanti P. R., Ward T. R. Interactive effects of environmentally relevant polychlorinated biphenyls and dioxins on [3H]phorbol ester binding in rat cerebellar granule cells. Environ Health Perspect. 1998 Aug;106(8):479–486. doi: 10.1289/ehp.98106479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kodavanti P. R., Ward T. R., McKinney J. D., Tilson H. A. Increased [3H]phorbol ester binding in rat cerebellar granule cells by polychlorinated biphenyl mixtures and congeners: structure-activity relationships. Toxicol Appl Pharmacol. 1995 Jan;130(1):140–148. doi: 10.1006/taap.1995.1018. [DOI] [PubMed] [Google Scholar]
  16. Kodavanti P. R., Ward T. R., McKinney J. D., Tilson H. A. Inhibition of microsomal and mitochondrial Ca2+-sequestration in rat cerebellum by polychlorinated biphenyl mixtures and congeners. Structure-activity relationships. Arch Toxicol. 1996;70(3-4):150–157. doi: 10.1007/s002040050254. [DOI] [PubMed] [Google Scholar]
  17. Kodavanti P. R., Ward T. R., McKinney J. D., Waller C. L., Tilson H. A. Increased [3H]phorbol ester binding in rat cerebellar granule cells and inhibition of 45Ca2+ sequestration in rat cerebellum by polychlorinated diphenyl ether congeners and analogs: structure-activity relationships. Toxicol Appl Pharmacol. 1996 Jun;138(2):251–261. doi: 10.1006/taap.1996.0123. [DOI] [PubMed] [Google Scholar]
  18. Lang V. Polychlorinated biphenyls in the environment. J Chromatogr. 1992 Mar 20;595(1-2):1–43. doi: 10.1016/0021-9673(92)85144-i. [DOI] [PubMed] [Google Scholar]
  19. Mayes B. A., McConnell E. E., Neal B. H., Brunner M. J., Hamilton S. B., Sullivan T. M., Peters A. C., Ryan M. J., Toft J. D., Singer A. W. Comparative carcinogenicity in Sprague-Dawley rats of the polychlorinated biphenyl mixtures Aroclors 1016, 1242, 1254, and 1260. Toxicol Sci. 1998 Jan;41(1):62–76. doi: 10.1093/toxsci/41.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
  21. Nicotera P., Bellomo G., Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–470. doi: 10.1146/annurev.pa.32.040192.002313. [DOI] [PubMed] [Google Scholar]
  22. Pachter J. A., Pai J. K., Mayer-Ezell R., Petrin J. M., Dobek E., Bishop W. R. Differential regulation of phosphoinositide and phosphatidylcholine hydrolysis by protein kinase C-beta 1 overexpression. Effects on stimulation by alpha-thrombin, guanosine 5'-O-(thiotriphosphate), and calcium. J Biol Chem. 1992 May 15;267(14):9826–9830. [PubMed] [Google Scholar]
  23. Risebrough R. W., Rieche P., Peakall D. B., Herman S. G., Kirven M. N. Polychlorinated biphenyls in the global ecosystem. Nature. 1968 Dec 14;220(5172):1098–1102. doi: 10.1038/2201098a0. [DOI] [PubMed] [Google Scholar]
  24. Safe S. H. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24(2):87–149. doi: 10.3109/10408449409049308. [DOI] [PubMed] [Google Scholar]
  25. Safe S. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ Health Perspect. 1993 Apr;100:259–268. doi: 10.1289/ehp.93100259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seegal R. F. Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Crit Rev Toxicol. 1996 Nov;26(6):709–737. doi: 10.3109/10408449609037481. [DOI] [PubMed] [Google Scholar]
  27. Silberhorn E. M., Glauert H. P., Robertson L. W. Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs. Crit Rev Toxicol. 1990;20(6):440–496. doi: 10.3109/10408449009029331. [DOI] [PubMed] [Google Scholar]
  28. Swanson G. M., Ratcliffe H. E., Fischer L. J. Human exposure to polychlorinated biphenyls (PCBs): a critical assessment of the evidence for adverse health effects. Regul Toxicol Pharmacol. 1995 Feb;21(1):136–150. doi: 10.1006/rtph.1995.1018. [DOI] [PubMed] [Google Scholar]
  29. Tilson H. A., Kodavanti P. R. Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology. 1997;18(3):727–743. [PubMed] [Google Scholar]
  30. Tilson H. A., Kodavanti P. R. The neurotoxicity of polychlorinated biphenyls. Neurotoxicology. 1998 Aug-Oct;19(4-5):517–525. [PubMed] [Google Scholar]
  31. Vaccarino F. M., Liljequist S., Tallman J. F. Modulation of protein kinase C translocation by excitatory and inhibitory amino acids in primary cultures of neurons. J Neurochem. 1991 Aug;57(2):391–396. doi: 10.1111/j.1471-4159.1991.tb03765.x. [DOI] [PubMed] [Google Scholar]
  32. Vaccarino F. M., Liljequist S., Tallman J. F. Modulation of protein kinase C translocation by excitatory and inhibitory amino acids in primary cultures of neurons. J Neurochem. 1991 Aug;57(2):391–396. doi: 10.1111/j.1471-4159.1991.tb03765.x. [DOI] [PubMed] [Google Scholar]
  33. Van den Berg M., Birnbaum L., Bosveld A. T., Brunström B., Cook P., Feeley M., Giesy J. P., Hanberg A., Hasegawa R., Kennedy S. W. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998 Dec;106(12):775–792. doi: 10.1289/ehp.98106775. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES