Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Dec;109(12):1197–1206. doi: 10.1289/ehp.011091197

Cognitive effects of endocrine-disrupting chemicals in animals.

S L Schantz 1, J J Widholm 1
PMCID: PMC1240501  PMID: 11748026

Abstract

A large number of chemical pollutants including phthalates, alkylphenolic compounds, polychlorinated biphenyls and polychlorinated dibenzodioxins, organochlorine pesticides, bisphenol A, and metals including lead, mercury, and cadmium have the ability to disrupt endocrine function in animals. Some of these same chemicals have been shown to alter cognitive function in animals and humans. Because hormonally mediated events play a central role in central nervous system development and function, a number of researchers have speculated that the changes in cognitive function are mediated by the endocrine-like actions of these chemicals. In this paper we review the evidence that cognitive effects of chemicals classified as environmental endocrine disruptors are mediated by changes in hormonal function. We begin by briefly reviewing the role of gonadal steroids, thyroid hormones, and glucocorticoids in brain development and brain function. We then review the endocrine changes and cognitive effects that have been reported for selected endocrine-disrupting chemicals, discuss the evidence for causal relationships between endocrine disruption and cognitive effects, and suggest directions for future research.

Full Text

The Full Text of this article is available as a PDF (544.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. D., Perdew G. H., Buckalew A. R., Birnbaum L. S. Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol. 1994 Sep;128(1):138–150. doi: 10.1006/taap.1994.1191. [DOI] [PubMed] [Google Scholar]
  2. Ahlborg U. G., Brouwer A., Fingerhut M. A., Jacobson J. L., Jacobson S. W., Kennedy S. W., Kettrup A. A., Koeman J. H., Poiger H., Rappe C. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Eur J Pharmacol. 1992 Dec 1;228(4):179–199. doi: 10.1016/0926-6917(92)90029-c. [DOI] [PubMed] [Google Scholar]
  3. Akaike M., Kato N., Ohno H., Kobayashi T. Hyperactivity and spatial maze learning impairment of adult rats with temporary neonatal hypothyroidism. Neurotoxicol Teratol. 1991 May-Jun;13(3):317–322. doi: 10.1016/0892-0362(91)90077-a. [DOI] [PubMed] [Google Scholar]
  4. Al-Hachim G. M., Al-Baker A. Effects of chlordane on conditioned avoidance response, brain seizure threshold and open-field performance of prenatally-treated mice. Br J Pharmacol. 1973 Oct;49(2):311–315. doi: 10.1111/j.1476-5381.1973.tb08377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alber S. A., Strupp B. J. An in-depth analysis of lead effects in a delayed spatial alternation task: assessment of mnemonic effects, side bias, and proactive interference. Neurotoxicol Teratol. 1996 Jan-Feb;18(1):3–15. doi: 10.1016/0892-0362(95)02026-8. [DOI] [PubMed] [Google Scholar]
  6. Bayer S. A. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 1980 Mar 1;190(1):115–134. doi: 10.1002/cne.901900108. [DOI] [PubMed] [Google Scholar]
  7. Bellinger D. C. Interpreting the literature on lead and child development: the neglected role of the "experimental system". Neurotoxicol Teratol. 1995 May-Jun;17(3):201–212. doi: 10.1016/0892-0362(94)00081-n. [DOI] [PubMed] [Google Scholar]
  8. Berry B., McMahan R., Gallagher M. Spatial learning and memory at defined points of the estrous cycle: effects on performance of a hippocampal-dependent task. Behav Neurosci. 1997 Apr;111(2):267–274. doi: 10.1037//0735-7044.111.2.267. [DOI] [PubMed] [Google Scholar]
  9. Bestervelt L. L., Cai Y., Piper D. W., Nolan C. J., Pitt J. A., Piper W. N. TCDD alters pituitary-adrenal function. I: Adrenal responsiveness to exogenous ACTH. Neurotoxicol Teratol. 1993 Nov-Dec;15(6):365–367. doi: 10.1016/0892-0362(93)90052-p. [DOI] [PubMed] [Google Scholar]
  10. Bestervelt L. L., Pitt J. A., Nolan C. J., Piper W. N. TCDD alters pituitary-adrenal function. II: Evidence for decreased bioactivity of ACTH. Neurotoxicol Teratol. 1993 Nov-Dec;15(6):371–376. doi: 10.1016/0892-0362(93)90053-q. [DOI] [PubMed] [Google Scholar]
  11. Bitman J., Cecil H. C. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agric Food Chem. 1970 Nov-Dec;18(6):1108–1112. doi: 10.1021/jf60172a019. [DOI] [PubMed] [Google Scholar]
  12. Bjerke D. L., Brown T. J., MacLusky N. J., Hochberg R. B., Peterson R. E. Partial demasculinization and feminization of sex behavior in male rats by in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin is not associated with alterations in estrogen receptor binding or volumes of sexually differentiated brain nuclei. Toxicol Appl Pharmacol. 1994 Aug;127(2):258–267. doi: 10.1006/taap.1994.1160. [DOI] [PubMed] [Google Scholar]
  13. Broadhurst M. G. Use and replaceability of polychlorinated biphenyls. Environ Health Perspect. 1972 Oct;2:81–102. doi: 10.1289/ehp.720281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  15. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998 Sep;8(9):827–856. doi: 10.1089/thy.1998.8.827. [DOI] [PubMed] [Google Scholar]
  16. Bushnell P. J., Bowman R. E. Reversal learning deficits in young monkeys exposed to lead. Pharmacol Biochem Behav. 1979 May;10(5):733–742. doi: 10.1016/0091-3057(79)90326-5. [DOI] [PubMed] [Google Scholar]
  17. Bushnell P. J., Rice D. C. Behavioral assessments of learning and attention in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) Neurotoxicol Teratol. 1999 Jul-Aug;21(4):381–392. doi: 10.1016/s0892-0362(99)00006-9. [DOI] [PubMed] [Google Scholar]
  18. Conrad C. D., Roy E. J. Selective loss of hippocampal granule cells following adrenalectomy: implications for spatial memory. J Neurosci. 1993 Jun;13(6):2582–2590. doi: 10.1523/JNEUROSCI.13-06-02582.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cory-Slechta D. A., Weiss B., Cox C. Performance and exposure indices of rats exposed to low concentrations of lead. Toxicol Appl Pharmacol. 1985 Apr;78(2):291–299. doi: 10.1016/0041-008x(85)90292-3. [DOI] [PubMed] [Google Scholar]
  20. Csaba G., Mag O., Inczefi-Gonda A., Szeberenyi S. Persistent influence of neonatal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment on glucocorticoid receptors and on the microsomal enzyme system. J Dev Physiol. 1991 Jun;15(6):337–340. [PubMed] [Google Scholar]
  21. De Kloet E. R., Rosenfeld P., Van Eekelen J. A., Sutanto W., Levine S. Stress, glucocorticoids and development. Prog Brain Res. 1988;73:101–120. doi: 10.1016/S0079-6123(08)60500-2. [DOI] [PubMed] [Google Scholar]
  22. Der R., Yousef M., Fahim Z., Fahim M. Effects of lead and cadmium on adrenal and thyroid functions in rats. Res Commun Chem Pathol Pharmacol. 1977 Jun;17(2):237–253. [PubMed] [Google Scholar]
  23. Diaz-Veliz G., Soto V., Dussaubat N., Mora S. Influence of the estrous cycle, ovariectomy and estradiol replacement upon the acquisition of conditioned avoidance responses in rats. Physiol Behav. 1989 Sep;46(3):397–401. doi: 10.1016/0031-9384(89)90010-3. [DOI] [PubMed] [Google Scholar]
  24. Dési I. Neurotoxicological effect of small quantities of lindane. Animal studies. Int Arch Arbeitsmed. 1974;33(2):153–162. doi: 10.1007/BF00538999. [DOI] [PubMed] [Google Scholar]
  25. Ecobichon D. J., MacKenzie D. O. The uterotropic activity of commercial and isomerically-pure chlorobiphenyls in the rat. Res Commun Chem Pathol Pharmacol. 1974 Sep;9(1):85–95. [PubMed] [Google Scholar]
  26. Evangelista de Duffard A. M., Orta C., Duffard R. Behavioral changes in rats fed a diet containing 2,4-dichlorophenoxyacetic butyl ester. Neurotoxicology. 1990 Winter;11(4):563–572. [PubMed] [Google Scholar]
  27. Francis D., Diorio J., LaPlante P., Weaver S., Seckl J. R., Meaney M. J. The role of early environmental events in regulating neuroendocrine development. Moms, pups, stress, and glucocorticoid receptors. Ann N Y Acad Sci. 1996 Sep 20;794:136–152. doi: 10.1111/j.1749-6632.1996.tb32517.x. [DOI] [PubMed] [Google Scholar]
  28. Gilbert S. G., Grant-Webster K. S. Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect. 1995 Sep;103 (Suppl 6):135–142. doi: 10.1289/ehp.95103s6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gilbert S. G., Rice D. C. Low-level lifetime lead exposure produces behavioral toxicity (spatial discrimination reversal) in adult monkeys. Toxicol Appl Pharmacol. 1987 Dec;91(3):484–490. doi: 10.1016/0041-008x(87)90070-6. [DOI] [PubMed] [Google Scholar]
  30. Goldey E. S., Crofton K. M. Thyroxine replacement attenuates hypothyroxinemia, hearing loss, and motor deficits following developmental exposure to Aroclor 1254 in rats. Toxicol Sci. 1998 Sep;45(1):94–105. doi: 10.1006/toxs.1998.2495. [DOI] [PubMed] [Google Scholar]
  31. Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol. 1995 Nov;135(1):77–88. doi: 10.1006/taap.1995.1210. [DOI] [PubMed] [Google Scholar]
  32. Goldey E. S., Kehn L. S., Rehnberg G. L., Crofton K. M. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol Appl Pharmacol. 1995 Nov;135(1):67–76. doi: 10.1006/taap.1995.1209. [DOI] [PubMed] [Google Scholar]
  33. Gould E., Cameron H. A. Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci. 1996;18(1-2):22–35. doi: 10.1159/000111392. [DOI] [PubMed] [Google Scholar]
  34. Gould E., Westlind-Danielsson A., Frankfurt M., McEwen B. S. Sex differences and thyroid hormone sensitivity of hippocampal pyramidal cells. J Neurosci. 1990 Mar;10(3):996–1003. doi: 10.1523/JNEUROSCI.10-03-00996.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gould E., Woolley C. S., McEwen B. S. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones. Psychoneuroendocrinology. 1991;16(1-3):67–84. doi: 10.1016/0306-4530(91)90071-z. [DOI] [PubMed] [Google Scholar]
  36. Gray L. E., Jr, Kelce W. R., Monosson E., Ostby J. S., Birnbaum L. S. Exposure to TCDD during development permanently alters reproductive function in male Long Evans rats and hamsters: reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. Toxicol Appl Pharmacol. 1995 Mar;131(1):108–118. doi: 10.1006/taap.1995.1052. [DOI] [PubMed] [Google Scholar]
  37. Guilarte T. R., Miceli R. C., Jett D. A. Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development. Neurotoxicology. 1995 Spring;16(1):63–71. [PubMed] [Google Scholar]
  38. Hansen L. G. Stepping backward to improve assessment of PCB congener toxicities. Environ Health Perspect. 1998 Feb;106 (Suppl 1):171–189. doi: 10.1289/ehp.98106s1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Healy S. D., Braham S. R., Braithwaite V. A. Spatial working memory in rats: no differences between the sexes. Proc Biol Sci. 1999 Nov 22;266(1435):2303–2308. doi: 10.1098/rspb.1999.0923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hilson J. A., Strupp B. J. Analyses of response patterns clarify lead effects in olfactory reversal and extradimensional shift tasks: assessment of inhibitory control, associative ability, and memory. Behav Neurosci. 1997 Jun;111(3):532–542. doi: 10.1037//0735-7044.111.3.532. [DOI] [PubMed] [Google Scholar]
  41. Huisman M., Koopman-Esseboom C., Fidler V., Hadders-Algra M., van der Paauw C. G., Tuinstra L. G., Weisglas-Kuperus N., Sauer P. J., Touwen B. C., Boersma E. R. Perinatal exposure to polychlorinated biphenyls and dioxins and its effect on neonatal neurological development. Early Hum Dev. 1995 Apr 14;41(2):111–127. doi: 10.1016/0378-3782(94)01611-r. [DOI] [PubMed] [Google Scholar]
  42. Huisman M., Koopman-Esseboom C., Lanting C. I., van der Paauw C. G., Tuinstra L. G., Fidler V., Weisglas-Kuperus N., Sauer P. J., Boersma E. R., Touwen B. C. Neurological condition in 18-month-old children perinatally exposed to polychlorinated biphenyls and dioxins. Early Hum Dev. 1995 Oct 2;43(2):165–176. doi: 10.1016/0378-3782(95)01674-0. [DOI] [PubMed] [Google Scholar]
  43. Ibarrola N., Rodríguez-Peña A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res. 1997 Mar 28;752(1-2):285–293. doi: 10.1016/s0006-8993(96)01480-1. [DOI] [PubMed] [Google Scholar]
  44. Iniguez M. A., De Lecea L., Guadano-Ferraz A., Morte B., Gerendasy D., Sutcliffe J. G., Bernal J. Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology. 1996 Mar;137(3):1032–1041. doi: 10.1210/endo.137.3.8603571. [DOI] [PubMed] [Google Scholar]
  45. Koopman-Esseboom C., Morse D. C., Weisglas-Kuperus N., Lutkeschipholt I. J., Van der Paauw C. G., Tuinstra L. G., Brouwer A., Sauer P. J. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res. 1994 Oct;36(4):468–473. doi: 10.1203/00006450-199410000-00009. [DOI] [PubMed] [Google Scholar]
  46. Koopman-Esseboom C., Weisglas-Kuperus N., de Ridder M. A., Van der Paauw C. G., Tuinstra L. G., Sauer P. J. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants' mental and psychomotor development. Pediatrics. 1996 May;97(5):700–706. [PubMed] [Google Scholar]
  47. Lehotzky K., Ungváry G., Polinák D., Kiss A. Behavioral deficits due to prenatal exposure to cadmium chloride in CFY rat pups. Neurotoxicol Teratol. 1990 Mar-Apr;12(2):169–172. doi: 10.1016/0892-0362(90)90130-5. [DOI] [PubMed] [Google Scholar]
  48. Levin E. D., Bowman R. E. Long-term lead effects on the Hamilton Search Task and delayed alternation in monkeys. Neurobehav Toxicol Teratol. 1986 May-Jun;8(3):219–224. [PubMed] [Google Scholar]
  49. Luine V., Martinez C., Villegas M., Magariños A. M., McEwen B. S. Restraint stress reversibly enhances spatial memory performance. Physiol Behav. 1996 Jan;59(1):27–32. doi: 10.1016/0031-9384(95)02016-0. [DOI] [PubMed] [Google Scholar]
  50. Luine V., Villegas M., Martinez C., McEwen B. S. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 1994 Mar 7;639(1):167–170. doi: 10.1016/0006-8993(94)91778-7. [DOI] [PubMed] [Google Scholar]
  51. Mably T. A., Bjerke D. L., Moore R. W., Gendron-Fitzpatrick A., Peterson R. E. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3. Effects on spermatogenesis and reproductive capability. Toxicol Appl Pharmacol. 1992 May;114(1):118–126. doi: 10.1016/0041-008x(92)90103-y. [DOI] [PubMed] [Google Scholar]
  52. MacLusky N. J., Brown T. J., Schantz S., Seo B. W., Peterson R. E. Hormonal interactions in the effects of halogenated aromatic hydrocarbons on the developing brain. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):185–208. doi: 10.1177/074823379801400112. [DOI] [PubMed] [Google Scholar]
  53. MacLusky N. J., Clark A. S., Naftolin F., Goldman-Rakic P. S. Estrogen formation in the mammalian brain: possible role of aromatase in sexual differentiation of the hippocampus and neocortex. Steroids. 1987 Oct-Dec;50(4-6):459–474. doi: 10.1016/0039-128x(87)90032-8. [DOI] [PubMed] [Google Scholar]
  54. MacLusky N. J., Naftolin F. Sexual differentiation of the central nervous system. Science. 1981 Mar 20;211(4488):1294–1302. doi: 10.1126/science.6163211. [DOI] [PubMed] [Google Scholar]
  55. Mactutus C. F., Tilson H. A. Neonatal chlordecone exposure impairs early learning and retention of active avoidance in the rat. Neurobehav Toxicol Teratol. 1984 Jan-Feb;6(1):75–83. [PubMed] [Google Scholar]
  56. Mactutus C. F., Unger K. L., Tilson H. A. Neonatal chlordecone exposure impairs early learning and memory in the rat on a multiple measure passive avoidance task. Neurotoxicology. 1982 Oct;3(2):27–44. [PubMed] [Google Scholar]
  57. Madeira M. D., Paula-Barbosa M., Cadete-Leite A., Tavares M. A. Unbiased estimate of hippocampal granule cell numbers in hypothyroid and in sex-age-matched control rats. J Hirnforsch. 1988;29(6):643–650. [PubMed] [Google Scholar]
  58. Maki P. M., Zonderman A. B., Resnick S. M. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry. 2001 Feb;158(2):227–233. doi: 10.1176/appi.ajp.158.2.227. [DOI] [PubMed] [Google Scholar]
  59. McEwen B. S., Coirini H., Westlind-Danielsson A., Frankfurt M., Gould E., Schumacher M., Woolley C. Steroid hormones as mediators of neural plasticity. J Steroid Biochem Mol Biol. 1991 Aug;39(2):223–232. doi: 10.1016/0960-0760(91)90067-f. [DOI] [PubMed] [Google Scholar]
  60. McEwen B. S., Gould E., Orchinik M., Weiland N. G., Woolley C. S. Oestrogens and the structural and functional plasticity of neurons: implications for memory, ageing and neurodegenerative processes. Ciba Found Symp. 1995;191:52–73. doi: 10.1002/9780470514757.ch4. [DOI] [PubMed] [Google Scholar]
  61. McGivern R. F., Sokol R. Z., Berman N. G. Prenatal lead exposure in the rat during the third week of gestation: long-term behavioral, physiological, and anatomical effects associated with reproduction. Toxicol Appl Pharmacol. 1991 Sep 1;110(2):206–215. doi: 10.1016/s0041-008x(05)80003-1. [DOI] [PubMed] [Google Scholar]
  62. Meaney M. J., Aitken D. H., van Berkel C., Bhatnagar S., Sapolsky R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science. 1988 Feb 12;239(4841 Pt 1):766–768. doi: 10.1126/science.3340858. [DOI] [PubMed] [Google Scholar]
  63. Meaney M. J., Stewart J., Poulin P., McEwen B. S. Sexual differentiation of social play in rat pups is mediated by the neonatal androgen-receptor system. Neuroendocrinology. 1983 Aug;37(2):85–90. doi: 10.1159/000123524. [DOI] [PubMed] [Google Scholar]
  64. Mele P. C., Bushnell P. J., Bowman R. E. Prolonged behavioral effects of early postnatal lead exposure in rhesus monkeys: fixed-interval responding and interactions with scopolamine and pentobarbital. Neurobehav Toxicol Teratol. 1984 Mar-Apr;6(2):129–135. [PubMed] [Google Scholar]
  65. Meserve L. A., Murray B. A., Landis J. A. Influence of maternal ingestion of Aroclor 1254 (PCB) or FireMaster BP-6 (PBB) on unstimulated and stimulated corticosterone levels in young rats. Bull Environ Contam Toxicol. 1992 May;48(5):715–720. doi: 10.1007/BF00195992. [DOI] [PubMed] [Google Scholar]
  66. Morse D. C., Wehler E. K., Wesseling W., Koeman J. H., Brouwer A. Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol. 1996 Feb;136(2):269–279. doi: 10.1006/taap.1996.0034. [DOI] [PubMed] [Google Scholar]
  67. Nesaretnam K., Corcoran D., Dils R. R., Darbre P. 3,4,3',4'-Tetrachlorobiphenyl acts as an estrogen in vitro and in vivo. Mol Endocrinol. 1996 Aug;10(8):923–936. doi: 10.1210/mend.10.8.8843409. [DOI] [PubMed] [Google Scholar]
  68. Ness D. K., Schantz S. L., Moshtaghian J., Hansen L. G. Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat. Toxicol Lett. 1993 Jun;68(3):311–323. doi: 10.1016/0378-4274(93)90023-q. [DOI] [PubMed] [Google Scholar]
  69. Newland M. C., Ng W. W., Baggs R. B., Gentry G. D., Weiss B., Miller R. K. Operant behavior in transition reflects neonatal exposure to cadmium. Teratology. 1986 Dec;34(3):231–241. doi: 10.1002/tera.1420340302. [DOI] [PubMed] [Google Scholar]
  70. Nunez J. Effects of thyroid hormones during brain differentiation. Mol Cell Endocrinol. 1984 Sep;37(2):125–132. doi: 10.1016/0303-7207(84)90043-1. [DOI] [PubMed] [Google Scholar]
  71. O'Keefe J. A., Handa R. J. Transient elevation of estrogen receptors in the neonatal rat hippocampus. Brain Res Dev Brain Res. 1990 Dec 1;57(1):119–127. doi: 10.1016/0165-3806(90)90191-z. [DOI] [PubMed] [Google Scholar]
  72. O'Neal M. F., Means L. W., Poole M. C., Hamm R. J. Estrogen affects performance of ovariectomized rats in a two-choice water-escape working memory task. Psychoneuroendocrinology. 1996 Jan;21(1):51–65. doi: 10.1016/0306-4530(95)00032-1. [DOI] [PubMed] [Google Scholar]
  73. Parducz A., Garcia-Segura L. M. Sexual differences in the synaptic connectivity in the rat dentate gyrus. Neurosci Lett. 1993 Oct 14;161(1):53–56. doi: 10.1016/0304-3940(93)90138-b. [DOI] [PubMed] [Google Scholar]
  74. Paul V., Balasubramaniam E., Jayakumar A. R., Kazi M. A sex-related difference in the neurobehavioral and hepatic effects following chronic endosulfan treatment in rats. Eur J Pharmacol. 1995 Dec 7;293(4):355–360. doi: 10.1016/0926-6917(95)90055-1. [DOI] [PubMed] [Google Scholar]
  75. Paul V., Balasubramaniam E., Kazi M. The neurobehavioural toxicity of endosulfan in rats: a serotonergic involvement in learning impairment. Eur J Pharmacol. 1994 Jan 3;270(1):1–7. doi: 10.1016/0926-6917(94)90074-4. [DOI] [PubMed] [Google Scholar]
  76. Paul V., Balasubramaniam E., Sheela S., Krishnamoorthy M. S. Effects of endosulfan and aldrin on muscle coordination and conditioned avoidance response in rats. Pharmacol Toxicol. 1992 Oct;71(4):254–257. doi: 10.1111/j.1600-0773.1992.tb00979.x. [DOI] [PubMed] [Google Scholar]
  77. Peruzović M., Kniewald J., Capkun V., Milković K. Effect of atrazine ingested prior to mating on rat females and their offspring. Acta Physiol Hung. 1995;83(1):79–89. [PubMed] [Google Scholar]
  78. Peterson R. E., Theobald H. M., Kimmel G. L. Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit Rev Toxicol. 1993;23(3):283–335. doi: 10.3109/10408449309105013. [DOI] [PubMed] [Google Scholar]
  79. Porterfield S. P., Hendry L. B. Impact of PCBs on thyroid hormone directed brain development. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):103–120. doi: 10.1177/074823379801400109. [DOI] [PubMed] [Google Scholar]
  80. Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ Health Perspect. 1994 Jun;102 (Suppl 2):125–130. doi: 10.1289/ehp.94102125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Rami A., Patel A. J., Rabié A. Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells. Neuroscience. 1986 Dec;19(4):1217–1226. doi: 10.1016/0306-4522(86)90135-1. [DOI] [PubMed] [Google Scholar]
  82. Rami A., Rabié A., Patel A. J. Thyroid hormone and development of the rat hippocampus: cell acquisition in the dentate gyrus. Neuroscience. 1986 Dec;19(4):1207–1216. doi: 10.1016/0306-4522(86)90134-x. [DOI] [PubMed] [Google Scholar]
  83. Rice D. C. Chronic low-lead exposure from birth produces deficits in discrimination reversal in monkeys. Toxicol Appl Pharmacol. 1985 Feb;77(2):201–210. doi: 10.1016/0041-008x(85)90319-9. [DOI] [PubMed] [Google Scholar]
  84. Rice D. C. Effect of exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) throughout gestation and lactation on development and spatial delayed alternation performance in rats. Neurotoxicol Teratol. 1999 Jan-Feb;21(1):59–69. doi: 10.1016/s0892-0362(98)00031-2. [DOI] [PubMed] [Google Scholar]
  85. Rice D. C. Effect of postnatal exposure to a PCB mixture in monkeys on multiple fixed interval-fixed ratio performance. Neurotoxicol Teratol. 1997 Nov-Dec;19(6):429–434. doi: 10.1016/s0892-0362(97)87364-3. [DOI] [PubMed] [Google Scholar]
  86. Rice D. C., Gilbert S. G. Lack of sensitive period for lead-induced behavioral impairment on a spatial delayed alternation task in monkeys. Toxicol Appl Pharmacol. 1990 Apr;103(2):364–373. doi: 10.1016/0041-008x(90)90236-n. [DOI] [PubMed] [Google Scholar]
  87. Rice D. C., Gilbert S. G. Low lead exposure from birth produces behavioral toxicity (DRL) in monkeys. Toxicol Appl Pharmacol. 1985 Sep 30;80(3):421–426. doi: 10.1016/0041-008x(85)90386-2. [DOI] [PubMed] [Google Scholar]
  88. Rice D. C., Hayward S. Effects of exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) throughout gestation and lactation on behavior (concurrent random interval-random interval and progressive ratio performance) in rats. Neurotoxicol Teratol. 1999 Nov-Dec;21(6):679–687. doi: 10.1016/s0892-0362(99)00021-5. [DOI] [PubMed] [Google Scholar]
  89. Rice D. C., Hayward S. Effects of postnatal exposure to a PCB mixture in monkeys on nonspatial discrimination reversal and delayed alternation performance. Neurotoxicology. 1997;18(2):479–494. [PubMed] [Google Scholar]
  90. Rice D. C., Hayward S. Lack of effect of 3,3'4,4',5-pentachlorobiphenyl (PCB 126) throughout gestation and lactation on multiple fixed interval-fixed ratio and DRL performance in rats. Neurotoxicol Teratol. 1998 Nov-Dec;20(6):645–650. doi: 10.1016/s0892-0362(98)00024-5. [DOI] [PubMed] [Google Scholar]
  91. Rice D. C. Lead-induced behavioral impairment on a spatial discrimination reversal task in monkeys exposed during different periods of development. Toxicol Appl Pharmacol. 1990 Nov;106(2):327–333. doi: 10.1016/0041-008x(90)90251-o. [DOI] [PubMed] [Google Scholar]
  92. Rice D. C. Sensory and cognitive effects of developmental methylmercury exposure in monkeys, and a comparison to effects in rodents. Neurotoxicology. 1996 Spring;17(1):139–154. [PubMed] [Google Scholar]
  93. Rissanen A., Puoliväli J., van Groen T., Riekkinen P., Jr In mice tonic estrogen replacement therapy improves non-spatial and spatial memory in a water maze task. Neuroreport. 1999 Apr 26;10(6):1369–1372. doi: 10.1097/00001756-199904260-00039. [DOI] [PubMed] [Google Scholar]
  94. Rivera S., Rosa R., Martínez E., Suñol C., Serrano M. T., Vendrell M., Rodríguez-Farré E., Sanfeliu C. Behavioral and monoaminergic changes after lindane exposure in developing rats. Neurotoxicol Teratol. 1998 Mar-Apr;20(2):155–160. doi: 10.1016/s0892-0362(97)00079-2. [DOI] [PubMed] [Google Scholar]
  95. Roegge C. S., Seo B. W., Crofton K. M., Schantz S. L. Gestational-lactational exposure to Aroclor 1254 impairs radial-arm maze performance in male rats. Toxicol Sci. 2000 Sep;57(1):121–130. doi: 10.1093/toxsci/57.1.121. [DOI] [PubMed] [Google Scholar]
  96. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Shaikh F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol. 1996 Feb;136(2):361–371. doi: 10.1006/taap.1996.0044. [DOI] [PubMed] [Google Scholar]
  97. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Templer L., Ringer D., Thomas P. E. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat. J Toxicol Environ Health A. 1998 May 22;54(2):101–120. doi: 10.1080/009841098158944. [DOI] [PubMed] [Google Scholar]
  98. Roof R. L., Havens M. D. Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res. 1992 Feb 14;572(1-2):310–313. doi: 10.1016/0006-8993(92)90491-q. [DOI] [PubMed] [Google Scholar]
  99. Sartorio A., Conti A., Molinari E., Riva G., Morabito F., Faglia G. Growth, growth hormone and cognitive functions. Horm Res. 1996;45(1-2):23–29. doi: 10.1159/000184754. [DOI] [PubMed] [Google Scholar]
  100. Schantz S. L., Bowman R. E. Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol. 1989 Jan-Feb;11(1):13–19. doi: 10.1016/0892-0362(89)90080-9. [DOI] [PubMed] [Google Scholar]
  101. Schantz S. L., Moshtaghian J., Ness D. K. Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fundam Appl Toxicol. 1995 Jun;26(1):117–126. doi: 10.1006/faat.1995.1081. [DOI] [PubMed] [Google Scholar]
  102. Schantz S. L., Seo B. W., Moshtaghian J., Peterson R. E., Moore R. W. Effects of gestational and lactational exposure to TCDD or coplanar PCBs on spatial learning. Neurotoxicol Teratol. 1996 May-Jun;18(3):305–313. doi: 10.1016/s0892-0362(96)90033-1. [DOI] [PubMed] [Google Scholar]
  103. Schantz S. L., Seo B. W., Wong P. W., Pessah I. N. Long-term effects of developmental exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB 95) on locomotor activity, spatial learning and memory and brain ryanodine binding. Neurotoxicology. 1997;18(2):457–467. [PubMed] [Google Scholar]
  104. Seo B. W., Powers B. E., Widholm J. J., Schantz S. L. Radial arm maze performance in rats following gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol. 2000 Jul-Aug;22(4):511–519. doi: 10.1016/s0892-0362(00)00070-2. [DOI] [PubMed] [Google Scholar]
  105. Seo B. W., Sparks A. J., Medora K., Amin S., Schantz S. L. Learning and memory in rats gestationally and lactationally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol. 1999 May-Jun;21(3):231–239. doi: 10.1016/s0892-0362(98)00049-x. [DOI] [PubMed] [Google Scholar]
  106. Sherwin B. B. Estrogen effects on cognition in menopausal women. Neurology. 1997 May;48(5 Suppl 7):S21–S26. doi: 10.1212/wnl.48.5_suppl_7.21s. [DOI] [PubMed] [Google Scholar]
  107. Shors T. J., Lewczyk C., Pacynski M., Mathew P. R., Pickett J. Stages of estrous mediate the stress-induced impairment of associative learning in the female rat. Neuroreport. 1998 Feb 16;9(3):419–423. doi: 10.1097/00001756-199802160-00012. [DOI] [PubMed] [Google Scholar]
  108. Shughrue P. J., Lane M. V., Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol. 1997 Dec 1;388(4):507–525. doi: 10.1002/(sici)1096-9861(19971201)388:4<507::aid-cne1>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  109. Silva J. E., Matthews P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. J Clin Invest. 1984 Sep;74(3):1035–1049. doi: 10.1172/JCI111471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Smith R. M., Cunningham W. L., Jr, van Gelder G. A., Karas G. G. Deldrin toxicity and successive discrimation reversal in squirrel monkeys (Saimiri sciureus). J Toxicol Environ Health. 1976 May;1(5):737–747. doi: 10.1080/15287397609529372. [DOI] [PubMed] [Google Scholar]
  111. Sobotka T. J. Behavioral effects of low doses of DDT. Proc Soc Exp Biol Med. 1971 Jul;137(3):952–955. doi: 10.3181/00379727-137-35703. [DOI] [PubMed] [Google Scholar]
  112. Sonnenschein C., Soto A. M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998 Apr;65(1-6):143–150. doi: 10.1016/s0960-0760(98)00027-2. [DOI] [PubMed] [Google Scholar]
  113. Stackman R. W., Blasberg M. E., Langan C. J., Clark A. S. Stability of spatial working memory across the estrous cycle of Long-Evans rats. Neurobiol Learn Mem. 1997 Mar;67(2):167–171. doi: 10.1006/nlme.1996.3753. [DOI] [PubMed] [Google Scholar]
  114. Tilson H. A., Shaw S., McLamb R. L. The effects of lindane, DDT, and chlordecone on avoidance responding and seizure activity. Toxicol Appl Pharmacol. 1987 Mar 30;88(1):57–65. doi: 10.1016/0041-008x(87)90269-9. [DOI] [PubMed] [Google Scholar]
  115. Tilson H. A., Squibb R. E., Burne T. A. Neurobehavioral effects following a single dose of chlordecone (Kepone) administered neonatally to rats. Neurotoxicology. 1982 Oct;3(2):45–57. [PubMed] [Google Scholar]
  116. Uppal R. P., Garg B. D., Ahmad A. Effect of malathion & DDT on the action of chlorpromazine & diazepam with reference to conditioned avoidance response in rats. Indian J Exp Biol. 1983 May;21(5):254–257. [PubMed] [Google Scholar]
  117. Uppal R. P., Garg B. D., Ahmad A. Effect of malathion & DDT on the action of some tranquilizers on learning & memory traces in rats. Indian J Exp Biol. 1983 Nov;21(11):617–619. [PubMed] [Google Scholar]
  118. Vaccari A. Teratogenic mechanisms of dysthyroidism in the central nervous system. Prog Brain Res. 1988;73:71–86. doi: 10.1016/S0079-6123(08)60498-7. [DOI] [PubMed] [Google Scholar]
  119. Vaher P. R., Luine V. N., Gould E., McEwen B. S. Effects of adrenalectomy on spatial memory performance and dentate gyrus morphology. Brain Res. 1994 Sep 5;656(1):71–78. doi: 10.1016/0006-8993(94)91367-6. [DOI] [PubMed] [Google Scholar]
  120. Valcana T., Timiras P. S. Nuclear triiodothyronine receptors in the developing rat brain. Mol Cell Endocrinol. 1978 Jun;11(1):31–41. doi: 10.1016/0303-7207(78)90030-8. [DOI] [PubMed] [Google Scholar]
  121. Vigouroux E., Clos J., Legrand J. Uptake and metabolism of exogenous and endogenous thyroxine in the brain of young rats. Horm Metab Res. 1979 Mar;11(3):228–232. doi: 10.1055/s-0028-1092714. [DOI] [PubMed] [Google Scholar]
  122. Vyskocil A., Fiala Z., Ettlerová E., Tenjnorová I. Influence of chronic lead exposure on hormone levels in developing rats. J Appl Toxicol. 1990 Aug;10(4):301–302. doi: 10.1002/jat.2550100412. [DOI] [PubMed] [Google Scholar]
  123. Warren S. G., Juraska J. M. Spatial and nonspatial learning across the rat estrous cycle. Behav Neurosci. 1997 Apr;111(2):259–266. doi: 10.1037//0735-7044.111.2.259. [DOI] [PubMed] [Google Scholar]
  124. Widholm J. J., Clarkson G. B., Strupp B. J., Crofton K. M., Seegal R. F., Schantz S. L. Spatial reversal learning in Aroclor 1254-exposed rats: sex-specific deficits in associative ability and inhibitory control. Toxicol Appl Pharmacol. 2001 Jul 15;174(2):188–198. doi: 10.1006/taap.2001.9199. [DOI] [PubMed] [Google Scholar]
  125. Williams C. L., Barnett A. M., Meck W. H. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav Neurosci. 1990 Feb;104(1):84–97. doi: 10.1037//0735-7044.104.1.84. [DOI] [PubMed] [Google Scholar]
  126. Williams C. L., Meck W. H. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology. 1991;16(1-3):155–176. doi: 10.1016/0306-4530(91)90076-6. [DOI] [PubMed] [Google Scholar]
  127. Woolley C. S., McEwen B. S. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. 1993 Oct 8;336(2):293–306. doi: 10.1002/cne.903360210. [DOI] [PubMed] [Google Scholar]
  128. Yau J. L., Olsson T., Morris R. G., Meaney M. J., Seckl J. R. Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats. Neuroscience. 1995 Jun;66(3):571–581. doi: 10.1016/0306-4522(94)00612-9. [DOI] [PubMed] [Google Scholar]
  129. Zheng W., Shen H., Blaner W. S., Zhao Q., Ren X., Graziano J. H. Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicol Appl Pharmacol. 1996 Aug;139(2):445–450. doi: 10.1006/taap.1996.0186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Zhu Y. S., Yen P. M., Chin W. W., Pfaff D. W. Estrogen and thyroid hormone interaction on regulation of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12587–12592. doi: 10.1073/pnas.93.22.12587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Zoeller R. T., Dowling A. L., Vas A. A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology. 2000 Jan;141(1):181–189. doi: 10.1210/endo.141.1.7273. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES