Abstract
The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, located on the west side of Lake Okeechobee, served as an intermediate site. Lake Apopka, the Belle Glade area located at the south end of Lake Okeechobee, and Water Conservation Area 3A, in the northern Everglades, served as our contaminated sites (all lakes are in Florida). Normal testosterone hydroxylase activity exhibited sexually dimorphic patterns of expression, with reference animals from Lake Woodruff exhibiting a female:male ratio of 1.44. This pattern was perturbed in all of the intermediate and contaminated sites investigated. Normal testosterone oxido-reductase activity exhibited sexually dimorphic expression (Lake Woodruff female:male ratio of 1.45). This pattern was altered in all contaminated sites investigated. UDP-Glucuronosyltransferase activity exhibited no sexually dimorphic pattern in animals collected from our reference site, with Lake Woodruff animals exhibiting a female:male ratio of 1.06. This pattern was perturbed in animals from Water Conservation Area 3A, which exhibited a female:male ratio of 0.65. Sulfotransferase activity demonstrated no sexual dimorphism at any of the sites investigated, although elevated activity was observed in males from the Lake Okeechobee watershed compared to those from Lake Woodruff. These data demonstrate different patterns of hepatic androgen biotransformation in animals living in contaminated environments.
Full Text
The Full Text of this article is available as a PDF (773.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin W. S., LeBlanc G. A. The anti-carcinogenic plant compound indole-3-carbinol differentially modulates P450-mediated steroid hydroxylase activities in mice. Chem Biol Interact. 1992 Aug 14;83(2):155–169. doi: 10.1016/0009-2797(92)90043-k. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Castrén M., Oikari A. Changes of the liver UDP-glucuronosyltransferase activity in trout (Salmo gairdneri Rich.) acutely exposed to selected aquatic toxicants. Comp Biochem Physiol C. 1987;86(2):357–360. doi: 10.1016/0742-8413(87)90094-6. [DOI] [PubMed] [Google Scholar]
- Ertl R. P., Alworth W. L., Winston G. W. Liver microsomal cytochromes P450-dependent alkoxyphenoxazone O-dealkylation in vitro by alligator and rat: activities, inhibition, substrate preference, and discrimination factors. J Biochem Mol Toxicol. 1999;13(1):17–27. doi: 10.1002/(sici)1099-0461(1999)13:1<17::aid-jbt3>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Ertl R. P., Bandiera S. M., Buhler D. R., Stegeman J. J., Winston G. W. Immunochemical analysis of liver microsomal cytochromes P450 of the American alligator, Alligator mississippiensis. Toxicol Appl Pharmacol. 1999 Jun 15;157(3):157–165. doi: 10.1006/taap.1999.8669. [DOI] [PubMed] [Google Scholar]
- Ertl R. P., Stegeman J. J., Winston G. W. Induction time course of cytochromes P450 by phenobarbital and 3-methylcholanthrene pretreatment in liver microsomes of Alligator mississippiensis. Biochem Pharmacol. 1998 May 1;55(9):1513–1521. doi: 10.1016/s0006-2952(98)00003-3. [DOI] [PubMed] [Google Scholar]
- Gray E. S., Woodin B. R., Stegeman J. J. Sex differences in hepatic monooxygenases in winter flounder (Pseudopleuronectes americanus) and scup (Stenotomus chrysops) and regulation of P450 forms by estradiol. J Exp Zool. 1991 Sep;259(3):330–342. doi: 10.1002/jez.1402590308. [DOI] [PubMed] [Google Scholar]
- Guillette L. J., Jr, Brock J. W., Rooney A. A., Woodward A. R. Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Arch Environ Contam Toxicol. 1999 May;36(4):447–455. doi: 10.1007/pl00006617. [DOI] [PubMed] [Google Scholar]
- Guillette L. J., Jr, Gross T. S., Gross D. A., Rooney A. A., Percival H. F. Gonadal steroidogenesis in vitro from juvenile alligators obtained from contaminated or control lakes. Environ Health Perspect. 1995 May;103 (Suppl 4):31–36. doi: 10.1289/ehp.95103s431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillette L. J., Jr, Gross T. S., Masson G. R., Matter J. M., Percival H. F., Woodward A. R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect. 1994 Aug;102(8):680–688. doi: 10.1289/ehp.94102680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillette L. J., Jr, Woodward A. R., Crain D. A., Pickford D. B., Rooney A. A., Percival H. F. Plasma steroid concentrations and male phallus size in juvenile alligators from seven Florida lakes. Gen Comp Endocrinol. 1999 Dec;116(3):356–372. doi: 10.1006/gcen.1999.7375. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Ingelman-Sundberg M. Regulation and properties of a sex-specific hydroxylase system in female rat liver microsomes active on steroid sulfates. I. General characteristics. J Biol Chem. 1974 Mar 25;249(6):1940–1945. [PubMed] [Google Scholar]
- Gustafsson J. A., Mode A., Norstedt G., Skett P. Sex steroid induced changes in hepatic enzymes. Annu Rev Physiol. 1983;45:51–60. doi: 10.1146/annurev.ph.45.030183.000411. [DOI] [PubMed] [Google Scholar]
- Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
- Legraverend C., Mode A., Wells T., Robinson I., Gustafsson J. A. Hepatic steroid hydroxylating enzymes are controlled by the sexually dimorphic pattern of growth hormone secretion in normal and dwarf rats. FASEB J. 1992 Jan 6;6(2):711–718. doi: 10.1096/fasebj.6.2.1537461. [DOI] [PubMed] [Google Scholar]
- Miles C. J., Pfeuffer R. J. Pesticides in canals of South Florida. Arch Environ Contam Toxicol. 1997 May;32(4):337–345. doi: 10.1007/s002449900194. [DOI] [PubMed] [Google Scholar]
- Niedermeyer T. M., Shapiro B. H. Selective androgen insensitivity of hepatic drug-metabolizing enzymes in senescent mice. Biochem Pharmacol. 1988 Jan 15;37(2):241–246. doi: 10.1016/0006-2952(88)90724-1. [DOI] [PubMed] [Google Scholar]
- Niwa T., Kaneko H., Naritomi Y., Togawa A., Shiraga T., Iwasaki K., Tozuka Z., Hata T. Species and sex differences of testosterone and nifedipine oxidation in liver microsomes of rat, dog and monkey. Xenobiotica. 1995 Nov;25(10):1041–1049. doi: 10.3109/00498259509061904. [DOI] [PubMed] [Google Scholar]
- Pampori N. A., Shapiro B. H. Sexual dimorphism in avian hepatic monooxygenases. Biochem Pharmacol. 1993 Sep 1;46(5):885–890. doi: 10.1016/0006-2952(93)90498-l. [DOI] [PubMed] [Google Scholar]
- Parks L. G., Cheek A. O., Denslow N. D., Heppell S. A., McLachlan J. A., LeBlanc G. A., Sullivan C. V. Fathead minnow (Pimephales promelas) vitellogenin: purification, characterization and quantitative immunoassay for the detection of estrogenic compounds. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999 Jun;123(2):113–125. doi: 10.1016/s0742-8413(99)00010-9. [DOI] [PubMed] [Google Scholar]
- Parks L. G., LeBlanc G. A. Involvement of multiple biotransformation processes in the metabolic elimination of testosterone by juvenile and adult fathead minnows (Pimephales promelas). Gen Comp Endocrinol. 1998 Oct;112(1):69–79. doi: 10.1006/gcen.1998.7131. [DOI] [PubMed] [Google Scholar]
- Sierra-Santoyo A., Hernández M., Albores A., Cebrián M. E. Sex-dependent regulation of hepatic cytochrome P-450 by DDT. Toxicol Sci. 2000 Mar;54(1):81–87. doi: 10.1093/toxsci/54.1.81. [DOI] [PubMed] [Google Scholar]
- Singer S. S., Galaska E. G., Feeser T. A., Benak R. L., Ansel A. Z., Moloney A. Enzymatic sulfation of steroids. XIX. Cortisol sulfotransferase activity, glucocorticoid sulfotransferases, and tyrosine aminotransferase induction in chicken, gerbil, and hamster liver. Can J Biochem Cell Biol. 1985 Jan;63(1):23–32. doi: 10.1139/o85-004. [DOI] [PubMed] [Google Scholar]
- Waxman D. J., Ko A., Walsh C. Regioselectivity and stereoselectivity of androgen hydroxylations catalyzed by cytochrome P-450 isozymes purified from phenobarbital-induced rat liver. J Biol Chem. 1983 Oct 10;258(19):11937–11947. [PubMed] [Google Scholar]
- Waxman D. J. Rat hepatic cytochrome P-450 isoenzyme 2c. Identification as a male-specific, developmentally induced steroid 16 alpha-hydroxylase and comparison to a female-specific cytochrome P-450 isoenzyme. J Biol Chem. 1984 Dec 25;259(24):15481–15490. [PubMed] [Google Scholar]
- White R. D., Hahn M. E., Lockhart W. L., Stegeman J. J. Catalytic and immunochemical characterization of hepatic microsomal cytochromes P450 in beluga whale (Delphinapterus leucas). Toxicol Appl Pharmacol. 1994 May;126(1):45–57. doi: 10.1006/taap.1994.1089. [DOI] [PubMed] [Google Scholar]
- Willingham E., Rhen T., Sakata J. T., Crews D. Embryonic treatment with xenobiotics disrupts steroid hormone profiles in hatchling red-eared slider turtles (Trachemys scripta elegans). Environ Health Perspect. 2000 Apr;108(4):329–332. doi: 10.1289/ehp.00108329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson V. S., LeBlanc G. A. Endosulfan elevates testosterone biotransformation and clearance in CD-1 mice. Toxicol Appl Pharmacol. 1998 Jan;148(1):158–168. doi: 10.1006/taap.1997.8319. [DOI] [PubMed] [Google Scholar]
- Wilson V. S., LeBlanc G. A. The contribution of hepatic inactivation of testosterone to the lowering of serum testosterone levels by ketoconazole. Toxicol Sci. 2000 Mar;54(1):128–137. doi: 10.1093/toxsci/54.1.128. [DOI] [PubMed] [Google Scholar]
- Wilson V. S., McLachlan J. B., Falls J. G., LeBlanc G. A. Alteration in sexually dimorphic testosterone biotransformation profiles as a biomarker of chemically induced androgen disruption in mice. Environ Health Perspect. 1999 May;107(5):377–384. doi: 10.1289/ehp.99107377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida T., Nomura M., Suzuki Y., Uchiyama M. Inhibition of hepatic UDP-glucoronyltransferase activity by organophosphate insecticides and by carbon disulfide in mice. Bull Environ Contam Toxicol. 1976 Apr;15(4):421–424. doi: 10.1007/BF01685065. [DOI] [PubMed] [Google Scholar]