Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Dec;109(12):1275–1283. doi: 10.1289/ehp.011091275

The effects of PCB exposure and fish consumption on endogenous hormones.

V Persky 1, M Turyk 1, H A Anderson 1, L P Hanrahan 1, C Falk 1, D N Steenport 1, R Chatterton Jr 1, S Freels 1; Great Lakes Consortium1
PMCID: PMC1240511  PMID: 11748036

Abstract

Previous studies have suggested that exposure to polychlorinated biphenyls (PCBs) may alter thyroid function, but data on effects of PCB exposure on other endogenous hormones has been lacking. The current study is ancillary to a larger investigation of the effects of Great Lakes fish consumption on PCBs and reproductive function. In the current study we examine associations of PCBs, 1,1-bis (4-chlorophenyl)-2,2-dichloroethene (DDE), and fish consumption with thyroid and steroid hormones in 178 men and PCBs, DDE, and fish consumption with thyroid hormones in 51 women from the original study. Serum PCB level and consumption of Great Lakes fish are associated with significantly lower levels of thyroxine (T(4)) and free thyroxine index (FTI) in women and with significantly lower levels of T(4) in men. Fish consumption, but not PCB level, is significantly and inversely associated with triiodothyronine (T(3)) in men. Results for thyroid-stimulating hormone (TSH) are inconsistent. Among men, there are significant inverse associations of both PCB and fish consumption with sex hormone-binding globulin (SHBG)-bound testosterone, but no association with SHBG or free testosterone. There are no significant overall associations of PCB, DDE, or fish consumption with estrone sulfate, follicle-stimulating hormone, luteinizing hormone, or dehydroepiandrosterone sulfate. The results of this study are consistent with previous studies showing effects of fish consumption and PCB exposure on thyroid hormones and suggest that PCBs may also decrease steroid binding to SHBG. Elucidation of specific mechanisms must await future investigations.

Full Text

The Full Text of this article is available as a PDF (733.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akins J. R., Waldrep K., Bernert J. T., Jr The estimation of total serum lipids by a completely enzymatic 'summation' method. Clin Chim Acta. 1989 Oct 16;184(3):219–226. doi: 10.1016/0009-8981(89)90054-5. [DOI] [PubMed] [Google Scholar]
  2. Anderson H. A., Falk C., Hanrahan L., Olson J., Burse V. W., Needham L., Paschal D., Patterson D., Jr, Hill R. H., Jr Profiles of Great Lakes critical pollutants: a sentinel analysis of human blood and urine. The Great Lakes Consortium. Environ Health Perspect. 1998 May;106(5):279–289. doi: 10.1289/ehp.98106279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson H., Falk C., Fiore B., Hanrahan L., Humphrey H. E., Kanarek M., Long T., Mortensen K., Shelley T., Sonzogni B. Consortium for the Health Assessment of Great Lakes Sport Fish Consumption. Toxicol Ind Health. 1996 May-Aug;12(3-4):369–373. doi: 10.1177/074823379601200309. [DOI] [PubMed] [Google Scholar]
  4. Bagchi N., Brown T. R., Parish R. F. Thyroid dysfunction in adults over age 55 years. A study in an urban US community. Arch Intern Med. 1990 Apr;150(4):785–787. [PubMed] [Google Scholar]
  5. Bonfrer J. M., Bruning P. F., Nooijen W. J. A simple method for the measurement of the steroid fraction bound to sex hormone binding globulin in serum. J Steroid Biochem. 1989 Aug;33(2):227–231. doi: 10.1016/0022-4731(89)90298-7. [DOI] [PubMed] [Google Scholar]
  6. Brouwer A., Ahlborg U. G., Van den Berg M., Birnbaum L. S., Boersma E. R., Bosveld B., Denison M. S., Gray L. E., Hagmar L., Holene E. Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol. 1995 May 26;293(1):1–40. doi: 10.1016/0926-6917(95)90015-2. [DOI] [PubMed] [Google Scholar]
  7. Burse V. W., Groce D. F., Korver M. P., McClure P. C., Head S. L., Needham L. L., Lapeza C. R., Jr, Smrek A. L. Use of reference pools to compare the qualitative and quantitative determination of polychlorinated biphenyls by packed and capillary gas chromatography with electron capture detection. Part 1. Serum. Analyst. 1990 Mar;115(3):243–251. doi: 10.1039/an9901500243. [DOI] [PubMed] [Google Scholar]
  8. Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999 Apr;107(4):273–278. doi: 10.1289/ehp.99107273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chopra I. J. A radioimmunoassay for measurement of thyroxine in unextracted serum. J Clin Endocrinol Metab. 1972 Jun;34(6):938–947. doi: 10.1210/jcem-34-6-938. [DOI] [PubMed] [Google Scholar]
  10. Corey D. A., Juárez de Ku L. M., Bingman V. P., Meserve L. A. Effects of exposure to polychlorinated biphenyl (PCB) from conception on growth, and development of endocrine, neurochemical, and cognitive measures in 60 day old rats. Growth Dev Aging. 1996 Autumn-Winter;60(3-4):131–143. [PubMed] [Google Scholar]
  11. DeRosa C. T., Johnson B. L. Strategic elements of ATSDR's Great Lakes Human Health Effects Research Program. Toxicol Ind Health. 1996 May-Aug;12(3-4):315–325. doi: 10.1177/074823379601200304. [DOI] [PubMed] [Google Scholar]
  12. Desaulniers D., Leingartner K., Wade M., Fintelman E., Yagminas A., Foster W. G. Effects of acute exposure to PCBs 126 and 153 on anterior pituitary and thyroid hormones and FSH isoforms in adult Sprague Dawley male rats. Toxicol Sci. 1999 Feb;47(2):158–169. doi: 10.1093/toxsci/47.2.158. [DOI] [PubMed] [Google Scholar]
  13. Desaulniers D., Poon R., Phan W., Leingartner K., Foster W. G., Chu I. Reproductive and thyroid hormone levels in rats following 90-day dietary exposure to PCB 28 (2,4,4'-trichlorobiphenyl) or PCB 77 (3,3'4,4'-tetrachlorobiphenyl). Toxicol Ind Health. 1997 Sep-Oct;13(5):627–638. doi: 10.1177/074823379701300504. [DOI] [PubMed] [Google Scholar]
  14. Eastman C. J., Corcoran J. M., Ekins R. P., Williams E. S., Nabarro J. D. The radioimmunoassay of triiodothyronine and its clinical application. J Clin Pathol. 1975 Mar;28(3):225–230. doi: 10.1136/jcp.28.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerhard I., Daniel V., Link S., Monga B., Runnebaum B. Chlorinated hydrocarbons in women with repeated miscarriages. Environ Health Perspect. 1998 Oct;106(10):675–681. doi: 10.1289/ehp.98106675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guo Y. L., Yu M. L., Hsu C. C., Rogan W. J. Chloracne, goiter, arthritis, and anemia after polychlorinated biphenyl poisoning: 14-year follow-Up of the Taiwan Yucheng cohort. Environ Health Perspect. 1999 Sep;107(9):715–719. doi: 10.1289/ehp.99107715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Helfand M., Redfern C. C. Clinical guideline, part 2. Screening for thyroid disease: an update. American College of Physicians. Ann Intern Med. 1998 Jul 15;129(2):144–158. doi: 10.7326/0003-4819-129-2-199807150-00020. [DOI] [PubMed] [Google Scholar]
  18. Henderson D. R., Friedman S. B., Harris J. D., Manning W. B., Zoccoli M. A. CEDIA, a new homogeneous immunoassay system. Clin Chem. 1986 Sep;32(9):1637–1641. [PubMed] [Google Scholar]
  19. Hollander C. S., Shenkman L., Mitsuma T., Asper S. P. Triiodothyronine toxicosis developing during antithyroid drug therapy for hyperthyroidism. Johns Hopkins Med J. 1972 Aug;131(2):184–188. [PubMed] [Google Scholar]
  20. Kato Y., Haraguchi K., Shibahara T., Masuda Y., Kimura R. Reduction of thyroid hormone levels by methylsulfonyl metabolites of polychlorinated biphenyl congeners in rats. Arch Toxicol. 1998 Jul-Aug;72(8):541–544. doi: 10.1007/s002040050540. [DOI] [PubMed] [Google Scholar]
  21. Koopman-Esseboom C., Morse D. C., Weisglas-Kuperus N., Lutkeschipholt I. J., Van der Paauw C. G., Tuinstra L. G., Brouwer A., Sauer P. J. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res. 1994 Oct;36(4):468–473. doi: 10.1203/00006450-199410000-00009. [DOI] [PubMed] [Google Scholar]
  22. Kowalski W., Chatterton R. T., Jr Peripheral and not central suppression of ovarian function during osmotic pump infusion of adrenocorticotropin-(1-24) for one menstrual cycle in the cynomolgus monkey and its partial compensation by a transitory elevation of sex hormone-binding globulin levels. Endocrinology. 1992 Jun;130(6):3582–3592. doi: 10.1210/endo.130.6.1597155. [DOI] [PubMed] [Google Scholar]
  23. Kustin J., Kazer R. R., Hoffman D. I., Chatterton R. T., Jr, Haan J. N., Green O. C., Rebar R. W. Insulin resistance and abnormal ovarian responses to human chorionic gonadotropin in chronically anovulatory women. Am J Obstet Gynecol. 1987 Dec;157(6):1468–1473. doi: 10.1016/s0002-9378(87)80246-6. [DOI] [PubMed] [Google Scholar]
  24. Langer P., Tajtáková M., Fodor G., Kocan A., Bohov P., Michálek J., Kreze A. Increased thyroid volume and prevalence of thyroid disorders in an area heavily polluted by polychlorinated biphenyls. Eur J Endocrinol. 1998 Oct;139(4):402–409. doi: 10.1530/eje.0.1390402. [DOI] [PubMed] [Google Scholar]
  25. Lawton R. W., Ross M. R., Feingold J., Brown J. F., Jr Effects of PCB exposure on biochemical and hematological findings in capacitor workers. Environ Health Perspect. 1985 May;60:165–184. doi: 10.1289/ehp.8560165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li M., Rhine C., Hansen L. G. Hepatic enzyme induction and acute endocrine effects of 2,3,3',4',6-pentachlorobiphenyl in prepubertal female rats. Arch Environ Contam Toxicol. 1998 Jul;35(1):97–103. doi: 10.1007/s002449900355. [DOI] [PubMed] [Google Scholar]
  27. Longnecker M. P., Gladen B. C., Patterson D. G., Jr, Rogan W. J. Polychlorinated biphenyl (PCB) exposure in relation to thyroid hormone levels in neonates. Epidemiology. 2000 May;11(3):249–254. doi: 10.1097/00001648-200005000-00004. [DOI] [PubMed] [Google Scholar]
  28. McKinney J. D., Pedersen L. G. Do residue levels of polychlorinated biphenyls (PCBs) in human blood produce mild hypothyroidism? J Theor Biol. 1987 Nov 21;129(2):231–241. doi: 10.1016/s0022-5193(87)80015-2. [DOI] [PubMed] [Google Scholar]
  29. Murai K., Okamura K., Tsuji H., Kajiwara E., Watanabe H., Akagi K., Fujishima M. Thyroid function in "yusho" patients exposed to polychlorinated biphenyls (PCB). Environ Res. 1987 Dec;44(2):179–187. doi: 10.1016/s0013-9351(87)80226-8. [DOI] [PubMed] [Google Scholar]
  30. Osius N., Karmaus W., Kruse H., Witten J. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect. 1999 Oct;107(10):843–849. doi: 10.1289/ehp.99107843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patterson D. G., Jr, Hampton L., Lapeza C. R., Jr, Belser W. T., Green V., Alexander L., Needham L. L. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1987 Aug 1;59(15):2000–2005. doi: 10.1021/ac00142a023. [DOI] [PubMed] [Google Scholar]
  32. Persky V. W., Chatterton R. T., Van Horn L. V., Grant M. D., Langenberg P., Marvin J. Hormone levels in vegetarian and nonvegetarian teenage girls: potential implications for breast cancer risk. Cancer Res. 1992 Feb 1;52(3):578–583. [PubMed] [Google Scholar]
  33. Pluim H. J., de Vijlder J. J., Olie K., Kok J. H., Vulsma T., van Tijn D. A., van der Slikke J. W., Koppe J. G. Effects of pre- and postnatal exposure to chlorinated dioxins and furans on human neonatal thyroid hormone concentrations. Environ Health Perspect. 1993 Nov;101(6):504–508. doi: 10.1289/ehp.93101504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ Health Perspect. 1994 Jun;102 (Suppl 2):125–130. doi: 10.1289/ehp.94102125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smith A. B., Schloemer J., Lowry L. K., Smallwood A. W., Ligo R. N., Tanaka S., Stringer W., Jones M., Hervin R., Glueck C. J. Metabolic and health consequences of occupational exposure to polychlorinated biphenyls. Br J Ind Med. 1982 Nov;39(4):361–369. doi: 10.1136/oem.39.4.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Street C., Howell R. J., Perry L., Al-Othman S., Chard T. Inhibition of binding of gonadal steroids to serum binding proteins by non-esterified fatty acids: the influence of chain length and degree of unsaturation. Acta Endocrinol (Copenh) 1989 Feb;120(2):175–179. doi: 10.1530/acta.0.1200175. [DOI] [PubMed] [Google Scholar]
  37. Vanderpump M. P., Tunbridge W. M., French J. M., Appleton D., Bates D., Clark F., Grimley Evans J., Hasan D. M., Rodgers H., Tunbridge F. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 1995 Jul;43(1):55–68. doi: 10.1111/j.1365-2265.1995.tb01894.x. [DOI] [PubMed] [Google Scholar]
  38. Visser T. J., Kaptein E., Gijzel A. L., de Herder W. W., Ebner T., Burchell B. Glucuronidation of thyroid hormone by human bilirubin and phenol UDP-glucuronyltransferase isoenzymes. FEBS Lett. 1993 Jun 21;324(3):358–360. doi: 10.1016/0014-5793(93)80151-j. [DOI] [PubMed] [Google Scholar]
  39. Visser T. J., Kaptein E., van Toor H., van Raaij J. A., van den Berg K. J., Joe C. T., van Engelen J. G., Brouwer A. Glucuronidation of thyroid hormone in rat liver: effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology. 1993 Nov;133(5):2177–2186. doi: 10.1210/endo.133.5.8404669. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES