Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Mar;109(Suppl 1):79–91. doi: 10.1289/ehp.01109s179

Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects.

D A Cory-Slechta 1, K M Crofton 1, J A Foran 1, J F Ross 1, L P Sheets 1, B Weiss 1, B Mileson 1
PMCID: PMC1240545  PMID: 11250808

Abstract

Alterations in nervous system function after exposure to a developmental neurotoxicant may be identified and characterized using neurobehavioral methods. A number of methods can evaluate alterations in sensory, motor, and cognitive functions in laboratory animals exposed to toxicants during nervous system development. Fundamental issues underlying proper use and interpretation of these methods include a) consideration of the scientific goal in experimental design, b) selection of an appropriate animal model, c) expertise of the investigator, d) adequate statistical analysis, and e) proper data interpretation. Strengths and weaknesses of the assessment methods include sensitivity, selectivity, practicality, and variability. Research could improve current behavioral methods by providing a better understanding of the relationship between alterations in motor function and changes in the underlying structure of these systems. Research is also needed to develop simple and sensitive assays for use in screening assessments of sensory and cognitive function. Assessment methods are being developed to examine other nervous system functions, including social behavior, autonomic processes, and biologic rhythms. Social behaviors are modified by many classes of developmental neurotoxicants and hormonally active compounds that may act either through neuroendocrine mechanisms or by directly influencing brain morphology or neurochemistry. Autonomic and thermoregulatory functions have been the province of physiologists and neurobiologists rather than toxicologists, but this may change as developmental neurotoxicology progresses and toxicologists apply techniques developed by other disciplines to examine changes in function after toxicant exposure.

Full Text

The Full Text of this article is available as a PDF (501.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbey H., Howard E. Statistical procedure in developmental studies on species with multiple offspring. Dev Psychobiol. 1973 Jul;6(4):329–335. doi: 10.1002/dev.420060406. [DOI] [PubMed] [Google Scholar]
  2. Altman J., Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975 Nov;23(4):896–920. doi: 10.1016/0003-3472(75)90114-1. [DOI] [PubMed] [Google Scholar]
  3. Amstislavsky S. Y., Amstislavskaya T. G., Eroschenko V. P. Methoxychlor given in the periimplantation period blocks sexual arousal in male mice. Reprod Toxicol. 1999 Sep-Oct;13(5):405–411. doi: 10.1016/s0890-6238(99)00030-1. [DOI] [PubMed] [Google Scholar]
  4. Archer J. Tests for emotionality in rats and mice: a review. Anim Behav. 1973 May;21(2):205–235. doi: 10.1016/s0003-3472(73)80065-x. [DOI] [PubMed] [Google Scholar]
  5. Bowyer J. F., Davies D. L., Schmued L., Broening H. W., Newport G. D., Slikker W., Jr, Holson R. R. Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther. 1994 Mar;268(3):1571–1580. [PubMed] [Google Scholar]
  6. Boyes W. K., Jenkins D. E., Dyer R. S. Chlordimeform produces contrast-dependent changes in visual evoked potentials of hooded rats. Exp Neurol. 1985 Aug;89(2):391–407. doi: 10.1016/0014-4886(85)90099-8. [DOI] [PubMed] [Google Scholar]
  7. Brooks A. I., Cory-Slechta D. A., Murg S. L., Federoff H. J. Repeated acquisition and performance chamber for mice: a paradigm for assessment of spatial learning and memory. Neurobiol Learn Mem. 2000 Nov;74(3):241–258. doi: 10.1006/nlme.1999.3951. [DOI] [PubMed] [Google Scholar]
  8. Carson T. L., Van Gelder G. A., Karas G. C., Buck W. B. Slowed learning in lambs prenatally exposed to lead. Arch Environ Health. 1974 Sep;29(3):154–156. doi: 10.1080/00039896.1974.10666554. [DOI] [PubMed] [Google Scholar]
  9. Cartmell J., Monn J. A., Schoepp D. D. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther. 1999 Oct;291(1):161–170. [PubMed] [Google Scholar]
  10. Chen J. S., Amsel A. Retention under changed-reward conditions of persistence learned by infant rats. Dev Psychobiol. 1980 Sep;13(5):469–480. doi: 10.1002/dev.420130505. [DOI] [PubMed] [Google Scholar]
  11. Cohn J., Cox C., Cory-Slechta D. A. The effects of lead exposure on learning in a multiple repeated acquisition and performance schedule. Neurotoxicology. 1993 Summer-Fall;14(2-3):329–346. [PubMed] [Google Scholar]
  12. Cohn J., MacPhail R. C. Ethological and experimental approaches to behavior analysis: implications for ecotoxicology. Environ Health Perspect. 1996 Apr;104 (Suppl 2):299–305. doi: 10.1289/ehp.96104s2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crofton K. M., Ding D., Padich R., Taylor M., Henderson D. Hearing loss following exposure during development to polychlorinated biphenyls: a cochlear site of action. Hear Res. 2000 Jun;144(1-2):196–204. doi: 10.1016/s0378-5955(00)00062-9. [DOI] [PubMed] [Google Scholar]
  14. Crofton K. M., Howard J. L., Moser V. C., Gill M. W., Reiter L. W., Tilson H. A., MacPhail R. C. Interlaboratory comparison of motor activity experiments: implications for neurotoxicological assessments. Neurotoxicol Teratol. 1991 Nov-Dec;13(6):599–609. doi: 10.1016/0892-0362(91)90043-v. [DOI] [PubMed] [Google Scholar]
  15. Dai H., Carey R. J. A new method to quantify behavioral attention to a stimulus object in a modified open-field. J Neurosci Methods. 1994 Jul;53(1):29–34. doi: 10.1016/0165-0270(94)90141-4. [DOI] [PubMed] [Google Scholar]
  16. Delville Y. Exposure to lead during development alters aggressive behavior in golden hamsters. Neurotoxicol Teratol. 1999 Jul-Aug;21(4):445–449. doi: 10.1016/s0892-0362(98)00062-2. [DOI] [PubMed] [Google Scholar]
  17. Dominguez H. D., Bocco G., Chotro M. G., Spear N. E., Molina J. C. Operant responding controlled by milk or milk contaminated with alcohol as positive reinforcers in infant rats. Pharmacol Biochem Behav. 1993 Feb;44(2):403–409. doi: 10.1016/0091-3057(93)90482-9. [DOI] [PubMed] [Google Scholar]
  18. Edwards P. M., Parker V. H. A simple, sensitive, and objective method for early assessment of acrylamide neuropathy in rats. Toxicol Appl Pharmacol. 1977 Jun;40(3):589–591. doi: 10.1016/0041-008x(77)90083-7. [DOI] [PubMed] [Google Scholar]
  19. Eilam D., Golani I. Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res. 1989 Sep 1;34(3):199–211. doi: 10.1016/s0166-4328(89)80102-0. [DOI] [PubMed] [Google Scholar]
  20. Etienne A. S., Maurer R., Séguinot V. Path integration in mammals and its interaction with visual landmarks. J Exp Biol. 1996 Jan;199(Pt 1):201–209. doi: 10.1242/jeb.199.1.201. [DOI] [PubMed] [Google Scholar]
  21. Fiore M., Petruzzi S., Dell'Omo G., Alleva E. Prenatal sulfur dioxide exposure induces changes in the behavior of adult male mice during agonistic encounters. Neurotoxicol Teratol. 1998 Sep-Oct;20(5):543–548. doi: 10.1016/s0892-0362(98)00003-8. [DOI] [PubMed] [Google Scholar]
  22. Fox W. M. Reflex-ontogeny and behavioural development of the mouse. Anim Behav. 1965 Apr-Jul;13(2):234–241. doi: 10.1016/0003-3472(65)90041-2. [DOI] [PubMed] [Google Scholar]
  23. Fukumura M., Sethi N., Vorhees C. V. Effects of the neurotoxin 3,3'-iminodipropionitrile on acoustic startle and locomotor activity in rats: a comparison of functional observational and automated startle assessment methods. Neurotoxicol Teratol. 1998 Mar-Apr;20(2):203–211. doi: 10.1016/s0892-0362(97)00100-1. [DOI] [PubMed] [Google Scholar]
  24. Gallistel C. R. Animal cognition: the representation of space, time and number. Annu Rev Psychol. 1989;40:155–189. doi: 10.1146/annurev.ps.40.020189.001103. [DOI] [PubMed] [Google Scholar]
  25. Geyer M. A., Russo P. V., Masten V. L. Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav. 1986 Jul;25(1):277–288. doi: 10.1016/0091-3057(86)90266-2. [DOI] [PubMed] [Google Scholar]
  26. Glowa J. R., Hansen C. T. Differences in response to an acoustic startle stimulus among forty-six rat strains. Behav Genet. 1994 Jan;24(1):79–84. doi: 10.1007/BF01067931. [DOI] [PubMed] [Google Scholar]
  27. Gonda Z., Miklósi A., Lehotzky K. The effect of social learning on a conditioned avoidance response of rats treated prenatally with aluminum lactate. Neurotoxicol Teratol. 1997 Jan-Feb;19(1):59–63. doi: 10.1016/s0892-0362(96)00133-x. [DOI] [PubMed] [Google Scholar]
  28. Gordon C. J., Heath J. E. Integration and central processing in temperature regulation. Annu Rev Physiol. 1986;48:595–612. doi: 10.1146/annurev.ph.48.030186.003115. [DOI] [PubMed] [Google Scholar]
  29. Gordon C. J., Miller D. B. Thermoregulation in rats exposed perinatally to dioxin: core temperature stability to altered ambient temperature, behavioral thermoregulation, and febrile response to lipopolysaccharide. J Toxicol Environ Health A. 1998 Aug 21;54(8):647–662. doi: 10.1080/009841098158665. [DOI] [PubMed] [Google Scholar]
  30. Gordon C. J. Thermal biology of the laboratory rat. Physiol Behav. 1990 May;47(5):963–991. doi: 10.1016/0031-9384(90)90025-y. [DOI] [PubMed] [Google Scholar]
  31. Gordon C. J., Yang Y., Gray L. E., Jr Autonomic and behavioral thermoregulation in golden hamsters exposed perinatally to dioxin. Toxicol Appl Pharmacol. 1996 Mar;137(1):120–125. doi: 10.1006/taap.1996.0063. [DOI] [PubMed] [Google Scholar]
  32. Hastings L. Sensory neurotoxicology: use of the olfactory system in the assessment of toxicity. Neurotoxicol Teratol. 1990 Sep-Oct;12(5):455–459. doi: 10.1016/0892-0362(90)90007-y. [DOI] [PubMed] [Google Scholar]
  33. Henley C. M., Rybak L. P. Developmental ototoxicity. Otolaryngol Clin North Am. 1993 Oct;26(5):857–871. [PubMed] [Google Scholar]
  34. Henley C. M., Rybak L. P. Ototoxicity in developing mammals. Brain Res Brain Res Rev. 1995 Jan;20(1):68–90. doi: 10.1016/0165-0173(94)00006-b. [DOI] [PubMed] [Google Scholar]
  35. Hine B. Differential open field reactivity in HAS and LAS rats. Physiol Behav. 1995 Feb;57(2):301–306. doi: 10.1016/0031-9384(94)00245-z. [DOI] [PubMed] [Google Scholar]
  36. Holson R. R., Pearce B. Principles and pitfalls in the analysis of prenatal treatment effects in multiparous species. Neurotoxicol Teratol. 1992 May-Jun;14(3):221–228. doi: 10.1016/0892-0362(92)90020-b. [DOI] [PubMed] [Google Scholar]
  37. Hughes C., Plumet M. H., Leboyer M. Towards a cognitive phenotype for autism: increased prevalence of executive dysfunction and superior spatial span amongst siblings of children with autism. J Child Psychol Psychiatry. 1999 Jul;40(5):705–718. [PubMed] [Google Scholar]
  38. Hull E. M., Lorrain D. S., Du J., Matuszewich L., Lumley L. A., Putnam S. K., Moses J. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav Brain Res. 1999 Nov 1;105(1):105–116. doi: 10.1016/s0166-4328(99)00086-8. [DOI] [PubMed] [Google Scholar]
  39. Ison J. R. Reflex modification as an objective test for sensory processing following toxicant exposure. Neurobehav Toxicol Teratol. 1984 Nov-Dec;6(6):437–445. [PubMed] [Google Scholar]
  40. Kelly J. B., Masterton B. Auditory sensitivity of the albino rat. J Comp Physiol Psychol. 1977 Aug;91(4):930–936. doi: 10.1037/h0077356. [DOI] [PubMed] [Google Scholar]
  41. Kelly T. H., Foltin R. W., Fischman M. W. The effects of repeated amphetamine exposure on multiple measures of human behavior. Pharmacol Biochem Behav. 1991 Feb;38(2):417–426. doi: 10.1016/0091-3057(91)90301-h. [DOI] [PubMed] [Google Scholar]
  42. Kempton S., Vance A., Maruff P., Luk E., Costin J., Pantelis C. Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med. 1999 May;29(3):527–538. doi: 10.1017/s0033291799008338. [DOI] [PubMed] [Google Scholar]
  43. Kernan W. J., Jr, Mullenix P. J., Hopper D. L. Time structure analysis of behavioral acts using a computer pattern recognition system. Pharmacol Biochem Behav. 1989 Dec;34(4):863–869. doi: 10.1016/0091-3057(89)90286-4. [DOI] [PubMed] [Google Scholar]
  44. Kim C. Y., Nakai K., Kasanuma Y., Satoh H. Comparison of neurobehavioral changes in three inbred strains of mice prenatally exposed to methylmercury. Neurotoxicol Teratol. 2000 May-Jun;22(3):397–403. doi: 10.1016/s0892-0362(99)00077-x. [DOI] [PubMed] [Google Scholar]
  45. Kuhlmann A. C., McGlothan J. L., Guilarte T. R. Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci Lett. 1997 Sep 19;233(2-3):101–104. doi: 10.1016/s0304-3940(97)00633-2. [DOI] [PubMed] [Google Scholar]
  46. Lee A., Li M., Watchus J., Fleming A. S. Neuroanatomical basis of maternal memory in postpartum rats: selective role for the nucleus accumbens. Behav Neurosci. 1999 Jun;113(3):523–538. doi: 10.1037//0735-7044.113.3.523. [DOI] [PubMed] [Google Scholar]
  47. Levin E. D., Simon B. B., Schmechel D. E., Glasgow H. B., Jr, Deamer-Melia N. J., Burkholder J. M., Moser V. C., Jensen K., Harry G. J. Pfiesteria toxin and learning performance. Neurotoxicol Teratol. 1999 May-Jun;21(3):215–221. doi: 10.1016/s0892-0362(98)00041-5. [DOI] [PubMed] [Google Scholar]
  48. Lobaugh N. J., Greene P. L., Grant M., Nick T., Amsel A. Patterned (single) alternation in infant rats after combined or separate lesions of hippocampus and amygdala. Behav Neurosci. 1989 Dec;103(6):1159–1167. doi: 10.1037//0735-7044.103.6.1159. [DOI] [PubMed] [Google Scholar]
  49. Lonstein J. S., Stern J. M. Site and behavioral specificity of periaqueductal gray lesions on postpartum sexual, maternal, and aggressive behaviors in rats. Brain Res. 1998 Aug 31;804(1):21–35. doi: 10.1016/s0006-8993(98)00642-8. [DOI] [PubMed] [Google Scholar]
  50. Lonstein J. S., Wagner C. K., De Vries G. J. Comparison of the "nursing" and other parental behaviors of nulliparous and lactating female rats. Horm Behav. 1999 Dec;36(3):242–251. doi: 10.1006/hbeh.1999.1544. [DOI] [PubMed] [Google Scholar]
  51. Luciana M., Nelson C. A. The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia. 1998 Mar;36(3):273–293. doi: 10.1016/s0028-3932(97)00109-7. [DOI] [PubMed] [Google Scholar]
  52. Mably T. A., Moore R. W., Goy R. W., Peterson R. E. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 2. Effects on sexual behavior and the regulation of luteinizing hormone secretion in adulthood. Toxicol Appl Pharmacol. 1992 May;114(1):108–117. doi: 10.1016/0041-008x(92)90102-x. [DOI] [PubMed] [Google Scholar]
  53. MacPhail R. C., Crofton K. M., Reiter L. W. Use of environmental challenges in behavioral toxicology. Fed Proc. 1983 Dec;42(15):3196–3200. [PubMed] [Google Scholar]
  54. Mattsson J. L. Ototoxicity: an argument for evaluation of the cochlea in safety testing in animals. Toxicol Pathol. 2000 Jan-Feb;28(1):137–141. doi: 10.1177/019262330002800117. [DOI] [PubMed] [Google Scholar]
  55. Maurissen J. P., Mattsson J. L. Critical assessment of motor activity as a screen for neurotoxicity. Toxicol Ind Health. 1989 Mar;5(2):195–202. doi: 10.1177/074823378900500205. [DOI] [PubMed] [Google Scholar]
  56. Maurissen J. P., Weiss B., Davis H. T. Somatosensory thresholds in monkeys exposed to acrylamide. Toxicol Appl Pharmacol. 1983 Nov;71(2):266–279. doi: 10.1016/0041-008x(83)90343-5. [DOI] [PubMed] [Google Scholar]
  57. Mendelson S. D., Pfaus J. G. Level searching: a new assay of sexual motivation in the male rat. Physiol Behav. 1989 Feb;45(2):337–341. doi: 10.1016/0031-9384(89)90136-4. [DOI] [PubMed] [Google Scholar]
  58. Merigan W. H., Barkdoll E., Maurissen J. P. Acrylamide-induced visual impairment in primates. Toxicol Appl Pharmacol. 1982 Feb;62(2):342–345. doi: 10.1016/0041-008x(82)90133-8. [DOI] [PubMed] [Google Scholar]
  59. Merigan W. H. Effects of toxicants on visual systems. Neurobehav Toxicol. 1979;1 (Suppl 1):15–22. [PubMed] [Google Scholar]
  60. Meyer O. A., Tilson H. A., Byrd W. C., Riley M. T. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol. 1979 Fall;1(3):233–236. [PubMed] [Google Scholar]
  61. Miczek K. A., Weerts E., Haney M., Tidey J. Neurobiological mechanisms controlling aggression: preclinical developments for pharmacotherapeutic interventions. Neurosci Biobehav Rev. 1994 Spring;18(1):97–110. doi: 10.1016/0149-7634(94)90040-x. [DOI] [PubMed] [Google Scholar]
  62. Miczek K. A., Winslow J. T., DeBold J. F. Heightened aggressive behavior by animals interacting with alcohol-treated conspecifics: studies with mice, rats and squirrel monkeys. Pharmacol Biochem Behav. 1984 Mar;20(3):349–353. doi: 10.1016/0091-3057(84)90269-7. [DOI] [PubMed] [Google Scholar]
  63. Moerschbaecher J. M., Thompson D. M., Winsauer P. J. Effects of opioids and phencyclidine in combination with naltrexone on the acquisition and performance of response sequences in monkeys. Pharmacol Biochem Behav. 1985 Jun;22(6):1061–1069. doi: 10.1016/0091-3057(85)90317-x. [DOI] [PubMed] [Google Scholar]
  64. Moye T. B., Vanderryn J. Physostigmine accelerates the development of associative memory processes in the infant rat. Psychopharmacology (Berl) 1988;95(3):401–406. doi: 10.1007/BF00181956. [DOI] [PubMed] [Google Scholar]
  65. Muller K. E., Benignus V. A. Increasing scientific power with statistical power. Neurotoxicol Teratol. 1992 May-Jun;14(3):211–219. doi: 10.1016/0892-0362(92)90019-7. [DOI] [PubMed] [Google Scholar]
  66. Müller M. Developmental changes of frequency representation in the rat cochlea. Hear Res. 1991 Nov;56(1-2):1–7. doi: 10.1016/0378-5955(91)90147-2. [DOI] [PubMed] [Google Scholar]
  67. Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
  68. Neitz J., Jacobs G. H. Reexamination of spectral mechanisms in the rat (Rattus norvegicus). J Comp Psychol. 1986 Mar;100(1):21–29. [PubMed] [Google Scholar]
  69. Norton S., Culver B., Mullenix P. Measurement of the effects of drugs on activity of permanent groups of rats. Psychopharmacol Commun. 1975;1(2):131–138. [PubMed] [Google Scholar]
  70. Palanza P., Parmigiani S., Liu H., vom Saal F. S. Prenatal exposure to low doses of the estrogenic chemicals diethylstilbestrol and o,p'-DDT alters aggressive behavior of male and female house mice. Pharmacol Biochem Behav. 1999 Dec;64(4):665–672. doi: 10.1016/s0091-3057(99)00151-3. [DOI] [PubMed] [Google Scholar]
  71. Paredes R. G., Vazquez B. What do female rats like about sex? Paced mating. Behav Brain Res. 1999 Nov 1;105(1):117–127. doi: 10.1016/s0166-4328(99)00087-x. [DOI] [PubMed] [Google Scholar]
  72. Paulus M. P., Callaway C. W., Geyer M. A. Quantitative assessment of the microstructure of rat behavior: II. Distinctive effects of dopamine releasers and uptake inhibitors. Psychopharmacology (Berl) 1993;113(2):187–198. doi: 10.1007/BF02245696. [DOI] [PubMed] [Google Scholar]
  73. Paulus M. P., Geyer M. A. A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology (Berl) 1991;104(1):6–16. doi: 10.1007/BF02244547. [DOI] [PubMed] [Google Scholar]
  74. Paulus M. P., Geyer M. A., Gold L. H., Mandell A. J. Application of entropy measures derived from the ergodic theory of dynamical systems to rat locomotor behavior. Proc Natl Acad Sci U S A. 1990 Jan;87(2):723–727. doi: 10.1073/pnas.87.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Paulus M. P., Geyer M. A. Quantitative assessment of the microstructure of rat behavior: I, f(d), the extension of the scaling hypothesis. Psychopharmacology (Berl) 1993;113(2):177–186. doi: 10.1007/BF02245695. [DOI] [PubMed] [Google Scholar]
  76. Peele D. B., Allison S. D., Crofton K. M. Learning and memory deficits in rats following exposure to 3,3'-iminodipropionitrile. Toxicol Appl Pharmacol. 1990 Sep 1;105(2):321–332. doi: 10.1016/0041-008x(90)90193-x. [DOI] [PubMed] [Google Scholar]
  77. Petruzzi S., Chiarotti F., Alleva E., Laviola G. Limited changes of mouse maternal care after prenatal oxazepam: dissociation from pup-related stimulus perception. Psychopharmacology (Berl) 1995 Nov;122(1):58–65. doi: 10.1007/BF02246442. [DOI] [PubMed] [Google Scholar]
  78. Pfaus J. G., Smith W. J., Coopersmith C. B. Appetitive and consummatory sexual behaviors of female rats in bilevel chambers. I. A correlational and factor analysis and the effects of ovarian hormones. Horm Behav. 1999 Jun;35(3):224–240. doi: 10.1006/hbeh.1999.1516. [DOI] [PubMed] [Google Scholar]
  79. Pryor G. T., Bingham L. R., Dickinson J., Rebert C. S., Howd R. A. Importance of schedule of exposure to hexane in causing neurotoxicity. Neurobehav Toxicol Teratol. 1982 Jan-Feb;4(1):71–78. [PubMed] [Google Scholar]
  80. Riley E. P., Meyer L. S. Considerations for the design, implementation, and interpretation of animal models of fetal alcohol effects. Neurobehav Toxicol Teratol. 1984 Mar-Apr;6(2):97–101. [PubMed] [Google Scholar]
  81. Ross Ross J. F. ECOs, FOBs, and UFOs: making sense of observational data. Toxicol Pathol. 2000 Jan-Feb;28(1):132–136. doi: 10.1177/019262330002800116. [DOI] [PubMed] [Google Scholar]
  82. Ross J. F., Handley D. E., Fix A. S., Lawhorn G. T., Carr G. J. Quantification of the hindlimb extensor thrust response in rats. Neurotoxicol Teratol. 1997 Sep-Oct;19(5):405–411. doi: 10.1016/s0892-0362(97)00044-5. [DOI] [PubMed] [Google Scholar]
  83. Ross J. F., Mattsson J. L., Fix A. S. Expanded clinical observations in toxicity studies: historical perspectives and contemporary issues. Regul Toxicol Pharmacol. 1998 Aug;28(1):17–26. doi: 10.1006/rtph.1998.1228. [DOI] [PubMed] [Google Scholar]
  84. Rubel E. W. Strategies and problems for future studies of auditory development. Acta Otolaryngol Suppl. 1985;421:114–128. doi: 10.3109/00016488509121765. [DOI] [PubMed] [Google Scholar]
  85. Rusak B., Zucker I. Biological rhythms and animal behavior. Annu Rev Psychol. 1975;26:137–171. doi: 10.1146/annurev.ps.26.020175.001033. [DOI] [PubMed] [Google Scholar]
  86. Sanberg P. R., Zoloty S. A., Willis R., Ticarich C. D., Rhoads K., Nagy R. P., Mitchell S. G., Laforest A. R., Jenks J. A., Harkabus L. J. Digiscan activity: automated measurement of thigmotactic and stereotypic behavior in rats. Pharmacol Biochem Behav. 1987 Jul;27(3):569–572. doi: 10.1016/0091-3057(87)90369-8. [DOI] [PubMed] [Google Scholar]
  87. Stanford J. A., Fowler S. C. Subchronic effects of clozapine and haloperidol on rats' forelimb force and duration during a press-while-licking task. Psychopharmacology (Berl) 1997 Apr;130(3):249–253. doi: 10.1007/s002130050236. [DOI] [PubMed] [Google Scholar]
  88. Stebbins W. C. Concerning the need for more sophisticated animal models in sensory behavioral toxicology. Environ Health Perspect. 1982 Apr;44:77–85. doi: 10.1289/ehp.824477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Tchernichovski O., Golani I. A phase plane representation of rat exploratory behavior. J Neurosci Methods. 1995 Nov;62(1-2):21–27. doi: 10.1016/0165-0270(95)00050-x. [DOI] [PubMed] [Google Scholar]
  90. Tchernichovski O., Golani I. A phase plane representation of rat exploratory behavior. J Neurosci Methods. 1995 Nov;62(1-2):21–27. doi: 10.1016/0165-0270(95)00050-x. [DOI] [PubMed] [Google Scholar]
  91. Tilson H. A., Burne T. A. Effects of triethyl tin on pain reactivity and neuromotor function of rats. J Toxicol Environ Health. 1981 Jul-Aug;8(1-2):317–324. doi: 10.1080/15287398109530072. [DOI] [PubMed] [Google Scholar]
  92. Treit D., Fundytus M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav. 1988 Dec;31(4):959–962. doi: 10.1016/0091-3057(88)90413-3. [DOI] [PubMed] [Google Scholar]
  93. Vernotica E. M., Rosenblatt J. S., Morrell J. I. Microinfusion of cocaine into the medial preoptic area or nucleus accumbens transiently impairs maternal behavior in the rat. Behav Neurosci. 1999 Apr;113(2):377–390. doi: 10.1037//0735-7044.113.2.377. [DOI] [PubMed] [Google Scholar]
  94. Walsh R. N., Cummins R. A. The Open-Field Test: a critical review. Psychol Bull. 1976 May;83(3):482–504. [PubMed] [Google Scholar]
  95. Watkinson W. P., Gordon C. J. Caveats regarding the use of the laboratory rat as a model for acute toxicological studies: modulation of the toxic response via physiological and behavioral mechanisms. Toxicology. 1993 Jul 11;81(1):15–31. doi: 10.1016/0300-483x(93)90153-j. [DOI] [PubMed] [Google Scholar]
  96. Whishaw I. Q., Brooks B. L. Calibrating space: exploration is important for allothetic and idiothetic navigation. Hippocampus. 1999;9(6):659–667. doi: 10.1002/(SICI)1098-1063(1999)9:6<659::AID-HIPO7>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  97. Willott J. F. Anatomic and physiologic aging: a behavioral neuroscience perspective. J Am Acad Audiol. 1996 Jun;7(3):141–151. [PubMed] [Google Scholar]
  98. Wise L. D., Allen H. L., Hoe C. M., Verbeke D. R., Gerson R. J. Developmental neurotoxicity evaluation of the avermectin pesticide, emamectin benzoate, in Sprague-Dawley rats. Neurotoxicol Teratol. 1997 Jul-Aug;19(4):315–326. doi: 10.1016/s0892-0362(97)00002-0. [DOI] [PubMed] [Google Scholar]
  99. Wolfe G. W., Bousquet W. F., Schnell R. C. Circadian variations in response to amphetamine and chlorpromazine in the rat. Commun Psychopharmacol. 1977;1(1):29–37. [PubMed] [Google Scholar]
  100. Wood R. W. Behavioral evaluation of sensory irritation evoked by ammonia. Toxicol Appl Pharmacol. 1979 Aug;50(1):157–162. doi: 10.1016/0041-008x(79)90503-9. [DOI] [PubMed] [Google Scholar]
  101. Wood R. W., Rees D. C., Laties V. G. Behavioral effects of toluene are modulated by stimulus control. Toxicol Appl Pharmacol. 1983 May;68(3):462–472. doi: 10.1016/0041-008x(83)90291-0. [DOI] [PubMed] [Google Scholar]
  102. Young J. S., Fechter L. D. Reflex inhibition procedures for animal audiometry: a technique for assessing ototoxicity. J Acoust Soc Am. 1983 May;73(5):1686–1693. doi: 10.1121/1.389391. [DOI] [PubMed] [Google Scholar]
  103. Young M. S., Young C. W., Li Y. C. A combined system for measuring animal motion activities. J Neurosci Methods. 2000 Jan 31;95(1):55–63. doi: 10.1016/s0165-0270(99)00156-9. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES